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ABSTRACT
Touchscreens enable intuitive mobile interaction. However, touch

input is limited to 2D touch locations which makes it challenging

to provide shortcuts and secondary actions similar to hardware

keyboards and mice. Previous work presented a wide range of ap-

proaches to provide secondary actions by identifying which finger

touched the display. While these approaches are based on external

sensors which are inconvenient, we use capacitive images from

mobile touchscreens to investigate the feasibility of finger identifi-

cation. We collected a dataset of low-resolution fingerprints and

trained convolutional neural networks that classify touches from

eight combinations of fingers. We focused on combinations that

involve the thumb and index finger as these are mainly used for

interaction. As a result, we achieved an accuracy of over 92 % for

a position-invariant differentiation between left and right thumbs.

We evaluated the model and two use cases that users find useful

and intuitive. We publicly share our data set (CapFingerId) com-

prising 455,709 capacitive images of touches from each finger on

a representative mutual capacitive touchscreen and our models to

enable future work using and improving them.
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1 INTRODUCTION
Nearly all mobile devices incorporate a touchscreen as the main

interface for interaction. Its combination of input and output in a
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(a) Using two thumbs for interaction (b) Raw Data

Figure 1: Identifying left and right thumbs on a commodity
smartphone using the raw capacitive data of touches.

single surface enables intuitive and dynamic user interfaces which

can be operated with direct touch. Although the concept of direct

touch feels natural to the user, the touch input vocabulary is limited

compared to traditional input devices such as hardware keyboard

andmouse. Capacitive touchscreens translate the raw data of fingers

touching the display into 2D coordinates whereas the remaining

raw data is omitted. With 2D coordinates alone, touch input lacks

further dimensions which are fundamental to access secondary

actions and shortcuts to frequently used functions. To extend the

input vocabulary, a wide range of previous work in HCI focused on

identifying individual fingers and other parts of the hand for touch

interaction.

By differentiating between inputs of different fingers on the dis-

play, functions and action modifiers can be assigned to individual

fingers. Performing the same input, but with different fingers, do

now activate different functions similar to the use of multiple but-

tons on a computermouse andmodifier keys on keyboards. Previous

work presented a wide range of promising use cases which ranges

from improving text entry on small touch displays [25], through

providing finger-aware shortcuts on touch keyboards [67], to en-

hancing multitasking on smartphones [24]. Accordingly, a wide

range of hardware prototypes were presented which identify indi-

vidual fingers based on sensors attached to the user [5, 24, 25, 47, 48]

and device [54, 62, 64, 67]. While these approaches are accurate,

they require additional sensors which reduces mobility and conve-

nience. There is no standalone solution yet that identifies fingers

on commodity smartphones.

https://doi.org/10.1145/3301275.3302295
https://doi.org/10.1145/3301275.3302295
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One solution to avoid additional sensors for finger identification

is to use the contact geometry of touches. Previous research focused

predominantly on tabletops that provide high-resolution images of

touches [2, 17, 18] to identify fingers based on multi-touch hand

models. By modifying the firmware of smartphones, researchers

used the raw data of commodity touchscreens (referred to as capac-
itive images) to infer further input dimensions. Capacitive images

represent low-resolution fingerprints and can be used to estimate

the finger orientation [50, 65], recognize body parts [32], palm

touches [37, 42], and hand poses [53]. Gil et al. [19] used capacitive

images of a smartwatch prototype to differentiate between touches

of thumb, index, and middle finger. However, they used exaggerated

poses on smartwatches so that each finger touched with a distinct

angle. Expecting these poses does not only impact the usability but

they are also not common and ergonomic for smartphone use (e.g.,
touching with half the middle finger).

Previous work showed that capacitive images provided by mo-

bile devices do not contain sufficient signal to identify each finger

during regular interaction [19]. However, being able to differen-

tiate between the primary input fingers (e.g., right thumb) and

others is already a useful addition to the input vocabulary. For ex-

ample, a second finger could perform shortcuts, secondary actions,

and even improve multitasking [24] or text entry [25]. Previous

work required wearable sensors [24, 25, 48], sequential data such

as gestures [45], pre-defined targets [6], or temporal features [66]

to differentiate between a set of fingers (e.g., left/right thumb). In

contrast, we use capacitive images to identify fingers within single

frames independent from context, position, and additional sensors.

We collected a data set comprising of capacitive images for each

finger and empirically studied finger combinations which can be

differentiated with a usable accuracy. While a feature engineering

approach with basic machine learning achieved inferior results, we

present a user and position-independent deep learning model to

differentiate between left and right thumbs with over 92 % accuracy.

We evaluated it with novel use cases that users find intuitive and

useful. Moreover, we publicly release our data set (CapFingerId)
and models to enable future work to use and improve finger identi-

fication on commodity smartphones. Our contribution is threefold

which includes (1) finger identification models, (2) data set, and (3)

thumb-aware touch use cases.

2 RELATEDWORK
Previous work presented a wide range of approaches to identify

individual fingers independent from context and position of touches.

They can be grouped into three categories: (1) attaching sensors to

the user, (2) using cameras, and (3) interpreting the shape geometry

of touches.

2.1 User-Worn Sensors
Finger identification approaches that attach sensors to the user gen-

erally yield the highest accuracies. Gupta et al. [24, 25] mounted in-

frared (IR) sensors on the index andmiddle finger to identify touches

by these two fingers with an accuracy of 99.5% upon individual

calibration. Similarly, Masson et al. [48] achieved a recognition

accuracy of 99.7% on touchpads using vibration sensors attached

to the user’s fingers. Further approaches include using electromyo-

graphy [5], gloves [47], and RFID tags [60] that are attached to

the user to identify finger touches based on sensor measurements.

Despite high accuracies, these approaches are not suitable for use

outside of lab settings. Besides additional sensors attached to the

user’s fingers, they also require attached computing units which

interpret the signal (e.g., Arduino).

2.2 External Cameras
Another wide range of approaches focused on using cameras to

identify touches from different fingers. Researchers predominantly

used a combination of RGB cameras and computer vision [62, 67] to

identify fingers for their prototypes; for example, Zheng et al. [67]
used the built-in webcam of laptops to identify fingers and hands on

the keyboard. Using depth cameras such as theMicrosoft Kinect pro-

vides additional depth information for finger identification. Depth

cameras were used by Murugappan [54] and Wilson [64] to imple-

ment touch sensors. The Leap Motion is a sensor device that uses

proprietary algorithms to provide a hand model with an average ac-

curacy of 0.7mm [63]. Colley and Häkkilä [12] used a LeapMotion

next to a smartphone to evaluate finger-aware interaction. While

these approaches do not require users to wear additional sensors,

they raise further challenges; amongst others, they reduce mobility

and convenience as external cameras need to be attached to the

device or mounted next to the touchscreen.

2.3 Imprint of Touch Inputs on Tabletops
One approach to avoid external sensors is to use the shape geome-

tries of touches to differentiate between fingers and other parts

of the hand. Tabletops are predominantly based on infrared cam-

eras below the touch surface [8, 49] or frustrated total internal
reflection [26]. These technologies provide images which represent

imprints of touches performed on the interactive surface. Previous

work in the tabletop domain used these images to explore novel

touch-based interaction which goes beyond individual 2D touch

locations [2, 8, 17, 18, 49]. For instance, Xiang et al. [8] used the

touch images provided by the Microsoft PixelSense (960 × 540px )
to infer the posture of the hand while Ewerling et al. [17] used
images of an IR camera (640 × 480px ) to differentiate between dif-

ferent hands and locations of individual fingers. However, these

approaches cannot be used for finger identification on commodity

mobile devices due to their immobile size.

2.4 Capacitive Touch Sensing
Mutual capacitive touchscreens are the predominant touch sensing

technology for mobile devices. They comprise of spatially separated

electrodes in two layers which are arranged as rows and columns [3].

To sense touches, the controller measures the change of coupling

capacitance between two orthogonal electrodes, i.e. intersections
of row and column pairs [13]. These measurements result in a

low-resolution finger imprint which previous work also referred

to as a capacitive image [23, 32, 37, 50]. Capacitive touchscreens of
commodity smartphones comprise around 400 to 600 electrodes (e.g.,
15 × 27 electrodes with each being 4.1 × 4.1mm on an LG Nexus 5).

Although more electrodes enable a more detailed capacitive image,
they also decrease the signal-to-noise ratio [9] while increasing the
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complexity of the manufacturing process. With electrode sizes of

approximately 5× 5mm, fingers and even stylus tips can already be

precisely determined so that a higher sensing resolution becomes

redundant regarding the translation of touches into 2D locations
1
.

Figure 1 shows examples of touch input imprints.

Despite the low resolution, previouswork presented awide range

of applications for the capacitive images [23, 32, 33, 37, 50, 61]. Not

only do capacitive images provide promising means for biometric

authentication [23, 32], but also enable to extend the touch input

vocabulary by inferring additional features of the touching ob-

ject. Using convolutional neural networks (CNNs), previous work

showed that parts of the hand [32, 37] and the orientation of a

finger [50, 65] can be estimated based on the touch imprint. Beyond

the touchscreen, Le et al. [38, 39, 41] also used capacitive images
of a fully touch sensitive smartphone to detect grips and estimate

the 3D location of the holding fingers. Further use cases include

grip adaptive interfaces [10, 11], touch prediction [51], and swipe

error detection [52]. Closest to our work, Gil et al. [19] used capaci-
tive images from a self-built smartwatch to differentiate between

the thumb, index and middle finger. However, when not done in

exaggerated poses (which is suitable for smartwatches but less for

smartphone input), the classification accuracy is lower than 70%

which is not reliable enough for interaction.

2.5 Summary
Previous work showed that a reliable identification of each finger

on commodity smartphones is not feasible due to the low resolution

of capacitive images. As the majority of fingers are placed on the

back when holding the device in common grips, we can assume that

they are not used for input. Thus, reliably differentiating between

combinations of input fingers (predominantly left/right thumbs and

index fingers [15, 16, 40, 43, 55]) already extends the input vocabu-

lary with useful features such as shortcuts and secondary actions.

While finger identification is not a new challenge, there is no data

set available which includes capacitive images of touches by each

finger on a capacitive touchscreen. Such a data set is required to

explore combinations of fingers which can be reliably differenti-

ated. Due to steady advances in machine learning research, publicly

releasing such a data set allows researchers and practitioners to

improve the accuracy of finger identification and find new differ-

entiable finger combinations in the future. Successful examples of

steady accuracy improvements based on public data sets are the

MNIST database
2
and ImageNet (ILSVRC).

3 RESEARCH APPROACH
We follow a data-driven approach similar to previous work [19,

37, 41] to explore the differentiation of finger pairs which can be

used to enhance touch input. In particular, our research approach

includes the following steps:

(1) Gathering the Data Set: We conduct a user study in which

participants are instructed to use specific fingers to perform

common touch input gestures. Since the input of participants

1
http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Communications_

Interface/Touchscreens_large_and_small.aspx

2
http://yann.lecun.com/exdb/mnist/

Figure 2: The study apparatus showing a participant solving
a scrolling task with the index finger.

are controlled with given instructions, all captured capaci-
tive images are automatically labeled with the finger which

performed the input and with the task during which input

was performed.

(2) Exploration and Model Development: We explore the data set

to provide an overview of the capacitive images for each

finger and to find distinctive features which could be used

for basic machine learning algorithms (e.g., SVM, kNN, or

random forests). We then train CNNs, a deep learning model

specialized on image data, to investigate the feasibility of

identifying fingers in different combinations.We use the data

generated by 80 % of the participants to train the models and

20 % of the data to test the model. While training the models,

we optimize the model parameters to achieve the highest

accuracy on the test set.

(3) Evaluation during Realistic Use: As optimizing purely for the

test set would introduce overfitting, we evaluate the general-

ization of our best model with a validation set (i.e., how well

they perform on unseen data). We conducted a second study

in which we retrieve the validation set with similar tasks

to determine the validation accuracy. Moreover, we evalu-

ate the model accuracy with realistic use cases to validate

beyond the data collection tasks, and to collect qualitative

feedback on the perceived usability of the model.

We focus on finger identification purely based on capacitive
images and state-of-the-art deep learning techniques to show the

feasibility of differentiating pairs of fingers. To enable futurework to

improve our results based on steady advances in machine learning

research and specialized models, we publicly released our data set

(see end of this paper).

4 DATA COLLECTION STUDY
We conducted a user study to collect labeled touch data while par-

ticipants performed representative touch actions. This data enables

us to train and evaluate models based on supervised learning for

distinguishing between different fingers. We adopted the study de-

sign from previous work by Le et al. [37] who used tasks that cover

http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Communications_Interface/Touchscreens_large_and_small.aspx
http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Communications_Interface/Touchscreens_large_and_small.aspx
http://yann.lecun.com/exdb/mnist/
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(a) Tapping task (b) Dragging task (c) Scrolling task

Figure 3: Tasks adapted from previous work [37] to cover
representative inputs on mobile touchscreens.

typical touch gestures such as tapping, scrolling, and dragging to

include representative actions.

4.1 Study Design & Tasks
To record representative touch input, we instructed participants to

perform three different tasks with each of the ten fingers to gener-

ate data. The tasks are shown in Figure 3 and include a tapping task
in which participants tapped and held the target for 1.5 seconds; a

scrolling task in which a red line needs to match a blue line (horizon-

tal and vertical); and a dragging task in which participants dragged

a tile into a target. Targets and shapes appeared at randomized

positions.

We used a 10 × 3 within-subjects design with the independent

variables being the fingers and the tasks. With each finger, par-

ticipants performed 30 repetitions of all three tasks resulting in

10 × 30 × 3 = 900 tasks per participant. We further divided the 30

repetitions of the scrolling task into 15 vertical and 15 horizontal

tasks to cover all scrolling directions. The order of fingers was bal-

anced using a Latin square while the tasks appeared in a shuffled

order.

4.2 Participants & Study Procedure
We recruited 20 participants (15 male and 5 female) with an aver-

age age of 22.4 (SD = 2.8). All except two were right-handed. The

average hand size measured from the wrist crease to the middle

fingertip ranged from 16.3 cm to 20.8 cm (M = 18.9 cm, SD = 1.3 cm).

Our data includes samples from the 5th and 95th percentile of the

anthropometric data [56]. Thus, the participants can be considered

as representative.

After obtaining informed consent, we measured the participants’

hand size and handed them an instruction sheet which explained

all three tasks. Participants were seated on a chair without armrests

and instructed to hold the device one-handed when touching with

the thumb, and two-handed for all other fingers. We instructed

participants to hold the device in the same angle for all fingers (i.e.

the angle they used first) to avoid the models potentially overfitting

to the angle between device and fingers (e.g., participants shifting
their grip or changing their body posture after a condition). On

average, participants finished all tasks within 45 minutes including

optional breaks. We reimbursed participants with 5 EUR for their

participation.

4.3 Apparatus
We used an LG Nexus 5 with a modified kernel as described in pre-

vious work [37, 39] to access the 15 × 27 8-bit capacitive image of

the Synaptics ClearPad 3350 touch sensor. Exemplary images of the

raw capacitive data are shown in Figure 1, where each image pixel

corresponds to a 4.1mm × 4.1mm square on the 4.95′′ touchscreen.

The pixel values represent the differences in electrical capacitance

(in pF ) between the baseline measurement and the current measure-

ment. We developed an application for the tasks described above

which logs a capacitive image every 50ms (20 fps). Images were

logged with the respective task name and finger to label each touch

automatically. Figure 2 shows the study apparatus.

5 MODELS FOR FINGER IDENTIFICATION
We present our data set and describe three steps towards developing

finger identification models: (1) cleaning the data set, (2) exploring

the data set to understand distinctive features between touches of

individual fingers, and (3) using deep learning to train models for

finger identification.

5.1 Data Set & Preprocessing
We collected 921,538 capacitive images in the data collection study.

We filtered empty images in which no touches were performed,

as well as erroneous images in which more than one finger was

touching the screen to avoid wrong labels. To train a position-

invariant model and enable classification of multiple blobs within

one capacitive image, we performed a blob detection, cropped the

results and pasted each blob into an empty 15 × 27 matrix (referred

to as blob image). The blob detection omitted all blobs that were not

larger than one pixel of the image (4.1mm × 4.1mm) as these can

be considered as noise of the capacitive touchscreen. In total, our

data set consists of 455, 709 blob images (194, 571 while tapping;

111, 758 while dragging; 149, 380 while scrolling).

Table 1: Parameters of all fitted ellipses. Parameters a and b
represent the length of minor and major semi-axes (inmm).
θ represents the ellipse rotation in a counter-clockwise ori-
entation in degrees.

a b θ

Hand Finger Count M SD M SD M SD

Thumb 50,897 7.32 1.27 7.48 1.47 43.05 49.77

Index 41,379 6.51 0.74 6.28 0.82 46.62 52.72

Left Middle 39,079 6.64 0.84 6.38 0.91 46.09 52.03

Ring 44,718 6.55 0.86 6.32 0.93 43.31 53.03

Little 45,794 6.21 1.00 6.39 1.24 33.57 53.06

Thumb 44,674 7.07 1.28 7.15 1.27 43.37 52.72

Index 46,507 6.60 0.91 6.45 1.06 46.04 52.76

Right Middle 47,082 6.73 0.95 6.55 1.10 51.86 49.33

Ring 47,229 6.71 0.88 6.47 0.96 47.55 49.07

Little 48,350 6.33 1.04 6.31 1.19 38.80 50.02



Finger Identification on Capacitive Touchscreens IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

Thumb Index Middle Ring Little Thumb Index Middle Ring Little
0

10

20

30

40

50

60

70

Av
er

ag
e 

8-
bi

t C
ap

ac
ita

nc
e 

Va
lu

es

Left Hand Right Hand

Capacitance Blob Area

0

25

50

75

100

125

150

175

200

Av
er

ag
e 

bl
ob

 si
ze

 (m
m

²)

Figure 4: Average capacitances and blob sizes for each finger.

5.2 Data Set Exploration
We visually inspected the generated touch blobs of each finger

during all tasks to find distinctive features. Figure 5 shows average

touch blobs for each finger including the blob size and distribution

of the measured capacitance. We generated these images by up-

scaling the capacitive images by a factor of 5 using the Lanczos4

algorithm [59] to increase clarity of the capacitance distribution.

We then cropped the blobs and overlayed them for each finger.

To describe the blobs, we fitted an ellipse around them using a

2D least squares estimator for ellipses
3
. The resulting ellipse pa-

rameters (minor-axis a, major-axis b, and orientation θ ) inmm are

averaged and shown in Table 1. We further explored the ellipse

areas (A = π ∗a ∗b) and the average measured capacitance of a blob.

We determined the average capacitance by averaging all electrode

measurements of a blob larger than 0. Figure 4 shows the average

capacitance (8-bit) and average blob size (inmm).

Similar to previous work [19, 37, 65], we used all five features (i.e.,
mean capacitance, the ellipse area, a, b, and θ ) to explore whether

basic machine learning models based on feature engineering are

sufficient for finger identification. For the sake of clarity, we focused

on random forests over which we performed a grid search to find

the best hyperparameters for each combination of fingers. Results

are reported in Table 2 (Baseline (RF)) and are inferior to deep

learning algorithms.

5.3 Convolutional Neural Networks
Deep learning algorithms such as CNNs learn features in part with

the labeled input data and have been shown to be more successful

than manual feature engineering [4]. Thus, we implemented CNNs

using Keras (based on the TensorFlow backend) and performed a

grid search as proposed by Hsu et al. [34] to determine the model

parameters that achieve the highest test accuracy for all models

as shown in Table 2. If we do not report a hyperparameter in the

following, we applied the standard value (e.g., optimizer settings) as

reported in Keras’ documentation. We started our grid search based

on a CNN architecture which previous work found to perform the

best on capacitive images [37, 41]. We performed our grid search

as follows: We experimented with the number of convolution and

3
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.

EllipseModel

dense layers in steps of 1. For the convolution part of the CNN, we

varied the kernel size in steps of 1× 1 and number of filters in steps

of 16. For the dense layers, we experimented with the number of

neurons in steps of 32. Moreover, we adapted the dropout factor in

steps of 0.1. Figure 6 shows the final network architecture which

achieved the highest test accuracy.

We trained the CNNs using an RMSprop optimizer [58] (similar

to AdaGrad [14] but with a less radical approach to decrease the

learning rate) with a batch size of 100. Further, we used the Xavier

initialization scheme [20] to initialize the network weights. We

used L2 regularization with a factor of 0.05, a 0.5 dropout after

each pooling layer and the dense layer, and Batch Normalization to

prevent overfitting during training. Our model expects a 15 × 27

blob image as input and returns the probability of each class (i.e.
finger) as output.

5.4 Models and Accuracies
Table 2 shows the models that we trained and their accuracies on a

test set. We trained and tested all models with a participant-wise

split of 80% to 20% (16:4) to avoid samples of the same participant

being in both training and test set.

The thumb l/r and index l/r models differentiate between

touches of the respective finger from the left hand and the right

hand. While the index l/r model achieved an accuracy of 65.23 %,

the thumb l/r model discriminates left and right thumbs with

an accuracy of 90.12%. Differentiating between thumb and index

finger independent from the hand (thumb/index) is feasible with

an accuracy of 84.01 %. Similarly, identifying whether a touch was

performed by the thumb or any other finger (thumb/others) yields

an accuracy of 86.44 %.

Identifying touches from the left or the right hand (hand l/r)

is feasible with an accuracy of 59.23%. We further explored the

differentiation between three fingers (i.e. thumb, index, and middle

finger) similar to previous work by Gil et al. [19]. With our Tri-

Tap model, we improved their accuracy by 2.92% which results

in 70.92%. Increasing the number of fingers to identify decreases

the accuracy. A hand-independent finger identification (5 fingers)

leads to an accuracy of 46.13% while additionally differentiating

between hands (10 fingers) yields an accuracy of 35.55 %.

In addition, we trained models using a subset of the data set

consisting of touches of the tapping task (Tap Data). Similar to Gil

et al. [19], we achieved improvements in accuracy of up to 3.75%

compared to the full data set. Moreover, we trained models for

each participant (user-based models) using their full datasets with
a 80%:20% split sorted by timestamps. This increased the average

accuracy by up to 32.4% while reaching maximum accuracies of

80 % to 99% per user. The improvements are substantial for 10

fingers, 5 fingers, TriTap and index l/r but not for models such

as thumb l/r with an already high accuracy. Out of all models, the

thumb l/r and thumb/others achieved the highest accuracy.

5.5 Discussion
We started the model development by exploring the data set and

training random forests based on features derived from the capac-

itive images. The results did not reveal any distinctive features

http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.EllipseModel
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Figure 5: Average capacitive image for touches of each finger upscaled by a factor of 5 (for clarity purposes). Fitted ellipses
represent the average area of touches inmm and the orientation θ thereof in degrees. The bars represent the standard deviation
of the minor-axis a and major-axis b.

Table 2: Accuracies for differentiating between finger combinations. The first two columns show the accuracy on the test
set based on a participant-wise 80%:20% (16:4) split. The third to sixth columns show user-based accuracies averaged over
participants with a 80%:20% split (sorted by timestamp). ZeroR represents the baseline accuracy (using most frequent label)
and Basic/RF represents the accuracy of random forests and feature engineering.

Full Data Tap Data Muser SDuser Minuser Maxuser Classes Baseline (ZeroR) Baseline (RF)

thumb l/r 90.12 % 93.14 % 88.61 % 7.18 % 72.17 % 97.30 % 2 52.97 % 66.20 %

index l/r 65.23 % 64.31 % 88.63 % 7.39 % 67.37 % 99.87 % 2 51.21 % 54.34 %

thumb/index 84.01 % 81.81 % 89.11 % 5.77 % 74.95 % 98.04 % 2 54.04 % 73.59 %

thumb/others 86.44 % 88.89 % 84.52 % 12.62 % 48.37 % 95.55 % 2 78.92 % 79.91 %

hand l/r 59.27 % 62.18 % 63.34 % 15.99 % 37.83 % 89.70 % 2 50.90 % 50.54 %

TriTap 67.17 % 70.92 % 82.12 % 6.63 % 68.67 % 95.44 % 3 31.73 % 56.54 %

5 fingers 46.13 % 47.15 % 64.35 % 7.86 % 48.87 % 79.07 % 5 21.08 % 32.14 %

10 fingers 35.55 % 37.86 % 67.95 % 7.44 % 58.67 % 83.91 % 10 11.60 % 17.93 %

which basic machine learning algorithms could use for finger iden-

tification. Thus, we applied CNNs to develop models to differenti-

ate between combinations of fingers. The achieved accuracies are

shown in Table 2.

As expected, the model for identifying 10 fingers leads to an ac-

curacy of 35.55 %, which is not practical for interaction. Confirming

previous work by Gil et al. [19], this indicates that the information

provided by the low-resolution capacitive images does not reveal

enough differences between the fingers. To improve upon this, we

then combined the same fingers of both hands into one class (5

fingers model) to achieve a higher accuracy (46.13%). However,

when considering the improvement factor over the baseline as sug-

gested by Kostakos and Musolesi [35], we found that this factor

decreases when combining fingers of both hands (2.1 for 10 fin-

gers, 1.2 for 5 fingers). Similarly, combining all fingers of a hand

into one class (hand l/r) leads to an accuracy of 59.27 % but with

an even lower improvement factor of 0.2. Moreover, discriminating

thumbs from other fingers (thumb/others) resulted in an improve-

ment factor of 0.1. This further suggests that combining touches

from multiple fingers into one class leads to more overlaps between

classes and a decrease of accuracy improvements over the baseline.

These results suggest that involving multiple fingers and classes

in the classification leads to accuracies that are not sufficient for

interaction.

To improve the accuracy, we explored models to differentiate

between the two fingers mainly used for input: thumb l/r, index

l/r, and thumb/index.While index l/r and thumb/index achieved



Finger Identification on Capacitive Touchscreens IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

accuracies of 65.23 % and 84.01 % respectively, thumb l/r achieved

the highest accuracy of all models (90.12 %). The high accuracy of

the thumb l/r model could be due to different reasons.We observed

that the thumb does not touch the display in a nearly perpendicular

angle as other fingers do. This results in a larger contact surface

which provides more information for classification. Amongst others,

this includes the thumb’s yaw angle (angle between thumb and

vertical axis of the touchscreen) which is different for touches of

the left and the right thumb (see Figure 1 and yellow hotspots in

Figure 5). While this works for the CNN, the pure orientation of

the blob is not sufficient for basic ML algorithms due to the high

standard deviation.

In an interaction scenario, fingers should be identified directly

after touching the display. Since the first touch is always a tap,

we trained models using only the tap data. We achieved accuracy

improvements of up to 3 % (e.g., 93.14 % for thumb l/r) as moving

fingers add additional noise, especially at a lower frame rate. We

further explored user-based models as collecting touches for on-

device training works similar to the setup of fingerprint scanners.

While thumb l/r did not improve, the 10 fingers model improved

by over 32%. The accuracy increase for user-based models could

be explained by individual postures (e.g. orientation) of each finger

which resulted in differentiable touch shapes. Our models can be

applied to other devices by retraining or scaling the raw data.

In summary, we found that reducing the number of fingers to

identify increases the overall accuracy. While identifying all 10

fingers is not sufficiently accurate on capacitive touchscreens of

commodity smartphones, differentiating between the left and right

thumb is feasible with an accuracy of over 92 %. This extends the

touch input vocabulary as the second thumb can be used for sec-

ondary actions, similar to the right mouse button. Moreover, pre-

vious work showed that using both thumbs is already a common

posture for most users [15, 16, 43, 55]. In addition to an offline

validation, we demonstrate the usefulness of our thumb l/r model,

suitable use cases, and the model’s accuracy during real use cases

on a commodity smartphone in the following.

6 MOBILE IMPLEMENTATION & USE CASES
We present our mobile implementation of the thumb l/r model,

and further use cases made possible with the model.
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Figure 6: General architecture used after performing an ini-
tial grid search for all finger combinations listed in Table 2.

6.1 Mobile Implementation
After freezing and exporting the trainedmodel into a protocol buffer

file, we used TensorFlow Mobile for Android to run the CNN on an

LG Nexus 5. A classification including blob detection and cropping

takes 19.2ms on average (min = 12ms ,max = 25ms , SD = 4.2ms)
over 1000 runs. As this is faster than the 20 fps sampling rate for the

capacitive images, the inference can be performed on each sample

in the background. Since recent processors (e.g., Snapdragon 845)

are optimized for machine learning, the classification time can be

reduced to a neglectable duration. The model can be further opti-

mized for mobile devices with techniques such as quantization [27]

and pruning [1] for a small loss of accuracy.

6.2 Sample Use Cases
We implemented two use cases for thumb identification which we

evaluated in a study as described below.

6.2.1 Multitasking with Porous User Interfaces. Gupta et al. [24]
presented Porous User Interfaces, which is a concept that overlays

two applications. Thereby, one finger interacts with the application

in the foreground while the other interacts with the background

application. We implemented an abstract scenario based on the

tasks used in the data collection study (see Figure 7b). Users can

scroll (horizontal bar) with the right thumb while they can drag the

square with the left thumb. This use case enables users to interact

with two applications (here: dragging and scrolling) simultaneously

without switching between applications. When touching the dis-

play, the upper left corner displays the recognized finger and thus

which action users are performing. Concretely, the concept could be

applied for purposes such as multitasking (e.g., instant messaging

in the foreground, calendar in the background) and exchanging

data between applications (e.g., dragging a file from a file manager

application in the background into a messaging application in the

foreground).

6.2.2 Painting Application. We implemented a painting application

in which users can draw using the right thumb and use the left

thumb for secondary tools (e.g., erasing or selecting colors using

a pie menu). In contrast to common painting applications, the full

screen space can be used for painting instead of sharing the space

between painting and menu area. Similar to the porous interfaces,

the upper left corner displays which thumb was recognized and

thus which action the user is performing (see Figure 7c).

6.3 Further Use Cases
We present further use cases for thumb-aware touch. We envision

that the functions can be inverted so that left-handed and right-

handed people can use them. In the following, we refer to the thumb

of the dominant hand as the first thumb while the other thumb is

referred to as the second thumb.

6.3.1 UI Components with Multiple Functions. Differentiating be-
tween two thumbs can be used similarly to two buttons on a hard-

ware mouse. For example, touching with the first thumb in a file

manager can be used to select and open files while touching with
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the second thumb can be used to open a context menu for the se-

lected file. Previous work presented GUI widgets that could be used

with our model [7].

6.3.2 3D Navigation. To navigate in 3D space, two thumbs can

be used to navigate in different dimensions. For example, the first

thumb rotates the view while the second thumb enables one to

move within the 3D space. This is similar to using arrow keys and

a mouse.

6.3.3 Handedness-Aware UI. While most user interfaces are de-

signed for right-handed users, they offer a setting to flip the layout.

Our model enables an adaptive layout based on the recognized

thumb.

7 EVALUATION STUDY
We conducted a study to validate the model’s accuracy and to

evaluate our sample applications with users. We focused on the

following two aspects: 1) model validation with new participants

and thus a dataset that was not involved in training and test, and

2) collecting qualitative feedback on the sample use cases and the

concept of thumb-aware interaction.

7.1 Study Procedure and Design
We designed three tasks to evaluate the two aspects described above.

After we obtained informed consent from participants, wemeasured

their hand sizes and collected demographic data. We handed them

an instruction sheet that explained all parts of the study so they

could refer to the instructions at any time.

7.1.1 Part 1 (Model Validation). In this part, we collect the valida-

tion set to evaluate the model performance with data from different

participants than the ones used to train and test the model. We used

the same tasks as in the data collection study (see Figure 3) and

instructed participants to perform dragging, tapping, and scrolling

tasks in a randomized order. All tasks were performed with the

left and the right thumb in a counterbalanced order so that we

could collect ground truth labels for the validation of the thumb

l/r model. Additionally, participants filled in a raw NASA-TLX

questionnaire [22, 29] to compare the perceived workload with

results from part 2.

7.1.2 Part 2 (Abstract Porous Interface). In addition to the first part,

we evaluate the effective accuracy which includes the model’s clas-

sification accuracy and human errors. The human error describes

the user’s error-proneness to use the correct fingers to solve the

tasks. To do so, we used the porous interface application to instruct

participants to solve dragging and scrolling tasks with different

thumbs. To collect ground truth labels for accuracy evaluation, new

targets appear as soon as the previous target was filled (e.g., in
Figure 7b a new target for dragging appeared after the scrolling

target was filled). Thus, the current task (e.g., dragging in Figure 7b)

can be used as the ground truth label. We asked participants to fill

in a NASA-TLX questionnaire to assess the perceived workload for

using the correct thumb to solve the task.

7.1.3 Part 3 (Painting Application). To evaluate the thumb l/r

model in a concrete scenario, we used the painting application

shown in Figure 7c in which users can draw using the right thumb

(a) Dragging (b) Porous UI (c) Painting

Figure 7: Screenshots of (a) a dragging task in part 1; (b) a
combined dragging and scrolling task as an abstract porous
interface in part 2; (c) the drawing application in part 3 with
a pie menu for color selection.

and use the left thumb for secondary tools (e.g., erasing or selecting
colors using a pie menu). Similar to the previous part, the upper

left corner displays which thumb was recognized and thus which

action the user is performing. We use this part to collect qualitative

feedback from participants on the concept of thumb-aware interac-
tion on a commodity smartphone. The qualitative feedback includes

a questionnaire for ratings, and an interview focused on the ad-

vantages and disadvantages of the interaction method. Further, we

asked for use cases that participants envisioned for thumb-aware
interaction on smartphones.

7.2 Participants
We recruited 10 participants (6 male, 4 females) with an average age

of 24.1 (SD = 3.0) who had not participated in the previous study. All

participants were right-handed. The average hand size measured

from the wrist crease to the middle fingertip ranged from 17.3 cm
to 21.0 cm (M = 18.5 cm, SD = 1.1 cm). We reimbursed participants

with 5 EUR for their participation.

8 RESULTS
We present the evaluation results which covers a model validation,

the effective (model and human) accuracy in an abstract use case,

and qualitative feedback on thumb-aware interaction.

8.1 Model Validation
Based on the collected capacitive images of new participants, the

thumb l/r model (trained with full data) achieved a mean accuracy

of 89.78% (SD = 3.30%,min = 84.90%,max = 96.50%). The mean

precision for detecting the left thumb was 88.72 % (SD = 4.43 %,min
= 82.31%,max = 95.68%) and the recall was 89.85% (SD = 3.90%,

min = 82.12%,max = 95.87%). Pearson’s correlation test did not

reveal a significant correlation between the hand size and accuracy

(r = −0.03, p = 0.94).
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A validation of the thumb l/r model (trained with tap data)

with the tap data subset resulted in a mean accuracy of 91.98 % (SD
= 5.24%, min = 81.98%, max = 99.23%). The mean precision for

detecting the left thumb was 90.80% (SD = 4.40%,min = 85.29%,

max = 98.84%) and the recall was 91.77% (SD = 7.81%, min =

77.15%,max = 99.48%). Again, Pearson’s correlation test did not

reveal a significant correlation between hand size and accuracy (r
= −0.04, p = 0.92).

8.2 Effective Accuracy in Porous Interfaces
Based on the performed task as ground truth (i.e., scroll or drag),
the following results represent the effective accuracy when consid-

ering both model and human errors. Human errors occured when

participants mistake, e.g., the left for the right thumb for the scroll

task. Therefore, these results describe the accuracy that one can

expect when also considering the error-proneness of users to use

the correct thumb for the tasks.

When classifying touches using the thumb l/r model (trained

with full data), the effective accuracy was 85.16% (SD = 3.50%,

min = 78.16%, max = 91.36%) with a precision of 86.77% (SD =

3.60%,min = 81.19%,max = 92.34%) and recall of 84.17% (SD =

4.74%,min = 74.03%,max = 89.96%) for detecting the left thumb.

Pearson’s correlation test did not reveal a significant correlation

between the participant’s hand size and classification accuracy (r =
−0.46, p = 0.18).

8.3 Subjective Feedback
We present the subjective feedback on the use cases. For the inter-

views, two researchers employed a simplified version of qualitative

coding with affinity diagramming [28] by coding the answers, print-

ing them on paper cards, and finally clustering the answers.

8.3.1 Perceived Workload Ratings. We used a raw NASA-TLX ques-

tionnaire [22] to assess participants’ perceived workload after us-

ing the abstract porous interface. Moreover, we assessed the per-

ceived workload after part 1 as a comparison. Mauchly’s Test of

Sphericity indicated that the assumption of sphericity had not been

violated, χ2(2) = .745, p = .689. A one-way ANOVA with repeated-

measures does not reveal any statistically significant differences

(F2,18 = 2.711,p = .093) between the perceived cognitive load when
using the left hand (M = 13.3, SD = 9.2), right hand (M = 7.3, SD =

7.3), or both hands for the abstract porous interface task (M = 11.2,

SD = 6.1).

8.3.2 Interview. When asked about the first impression after using

thumb-aware interaction, the majority (8) provided positive feed-

back. In particular, participants found it useful in general (“very
useful” - P7), for painting applications (“it is faster, especially since
one can switch color with the left hand” - P1), for multitasking pur-

poses (“very useful, especially to use two apps simultaneously” - P5),
and to avoid unintended touches (“one can not activate something
unintentionally” - P4). They commended the idea (“cool and innova-
tive idea” - P10) especially for the abstract porous interface task (“the
first task is easier to solve with two thumbs” - P5) and the painting

task (“makes painting easier, even quite good when holding the device
slightly different” - P1). Moreover, they (6) found the interaction

method intuitive (“more intuitive [than without]” - P7) and easy to

learn (“I am already used to using both thumbs. This makes learning
this interaction method easier.” - P6).

Confirming the perceived workload ratings, participants found

that they had no difficulties to coordinate the thumbs for the two

layers of the porous interface (“I had no cognitive difficulties” - P2,
“Needed to get used to in the beginning, but then it became easy” - P4).
Only one participant (P3) mentioned that it might be “confusing to
focus on two things simultaneously”. While two participants were

impressed by the finger identification accuracy (“Recognition was
already very good - there were only two cases in which my finger was
wrongly identified.” - P5), other (6) participants clearly noticed it

when fingers were wrongly identified (“little bit frustrating since
false recognitions leads to [unintended lines] that needs to be erased”
- P7). However, in the porous interface task, such identification

errors could be “easily fixed by touching the display once again” (P5).
Further, P5 noted that he “quickly learned how to [place] the thumbs
to control [the user interface]”.

When asked about use cases which they envision for thumb-
aware interaction, all participants were unanimous about multitask-

ing and shortcuts as the main use case. Moreover, they suggested

using the interaction method for mobile games and image editing.

For example, applications could offer multiple modes that make use

of the porous interface concept (P9, P10) to avoid manual switches.

Further, thumb-aware interaction could be used to interact with

3D objects so that each finger manipulated one dimension (P2, P5,

P9). This would also benefit mobile games so that each finger could

be assigned to one joystick or button so that fixed positions for

control elements would not be required (P1, P4, P6). When asked

about which fingers participants would use if all 10 fingers could be

recognized with a sufficient accuracy, participants were unanimous

that the thumb is the main finger for interacting with smartphones.

Further, 4 participants considered the index finger for interaction

while 2 would additionally consider the middle finger. To interact

with tablets on a table, all participants would use all fingers while

one participant further suggested using knuckles. In general, nine

participants would use the concept of thumb-aware interaction on

their devices (“definitely, if apps support it” - P4) while one would
not.

9 DISCUSSION
We conducted a user study to validate the accuracy of the thumb

l/r model with participants who had not participated in the data

collection study. Further, we combined the model validation with

an evaluation of two use cases that we implemented using thumb-
aware touch interaction. This includes an abstract scenario of porous
interfaces initially proposed by Gupta et al. [24], and a painting

application in which the right thumb can draw while the left thumb

is responsible for the settings (e.g., color and tool selection).

9.1 Model Validation Accuracy and Qualitative
Feedback

The model validation resulted in accuracies similar to the results

achieved in the offline validation with the test set. This suggests that

the thumb l/r model generalizes well across different users and

does not overfit. We also considered human errors (i.e., mixing up

between fingers) together with the model accuracy which resulted
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in an effective accuracy of 85.16 %. The 5 % difference in contrast to

the model validation could be due to a number of reasons. Human

errors are inevitable especially since users are not yet fully familiar

with this interaction concept. This conforms with the statements in

the interview. Further, there are technical limitations that affect the

accuracy of this live scenario. Due to the low retrieval rate of the

capacitive images (20 fps), the classification could have happened

on images in which the thumb was still in motion so that it just

barely touched the display. While one solution could be using mul-

tiple frames and taking the most predicted class, this would have

introduced latency.

Despite a decrease of 5 % accuracy in a live scenario, partici-

pants were positive about the use cases for thumb-aware interaction
and argued that wrong classifications could be fixed effortlessly

by placing the finger on the display again. One participant even

mentioned that he learned how to place the thumb on the screen

to avoid wrong classifications after the first iterations. The qualita-

tive feedback revealed that participants were unanimously positive

about the interaction method and that it can be a useful addition

to the touch input vocabulary. Moreover, the ratings showed that

interacting with porous interfaces using thumb-aware interaction
does not increase the perceived workload. This suggests that inter-

acting with two applications simultaneously can be intuitive for

users and further avoids repeatedly switching between applications

or splitting the screen which decreases the interaction space. Short-

cuts (e.g., pie menu for color selection) were perceived as intuitive

and can save screen space that is used for menu bars otherwise.

However, wrong identifications are reportedly more noticeable in

this use case.

9.2 Improving the Classification Performance
While the thumbmodels (i.e., thumb l/r, thumb/index, and thumb/others)
achieved accuracies well beyond the 80 % that previous work con-

sidered sufficient in general [35], sufficiency also depends on the

action’s consequence (e.g., easily recoverable action vs. permanent

action) and how classifications are translated to actions. While

the consequence depends on the application/developer, we dis-

cuss translation approaches and improvements that can further

minimize accidental activations to a neglectable amount in the

following.

Instead of translating a single classification result into an action,

previous work showed that taking the majority class of a set of

results noticeably improves the accuracy (i.e., majority voting [36]).

Since multiple results are considered, single incorrect results (e.g.,
due to outliers) can be compensated. This is especially useful for re-

coverable actions and scenarios that provide enough time to gather

multiple classifications (e.g., finger identification while performing

a gesture). Further, a threshold for the confidence score [46] of the

most likely class could be used to avoid incorrect translations due

to similarities. In case of a low confidence score, a touch could be

either omitted with a warning to the user, or a fallback function

could be activated that can easily be recovered. Especially with

recoverable functions in case of a wrong identification, the system

can collect touch data in the background to continuously improve

the finger identification model using on-device learning.

Our approach is solely based on capacitive images to investi-

gate the feasibility of identifying fingers within a single frame and

independent from context and position. Finger identification, in

general, could be improved with additional context information

from the touchscreen or additional sensors. The touch position

provides more information about the finger’s yaw angle for thumb

identification since distant touches (e.g., close to top edge) lead to

larger contact surfaces due to a stretched thumb. Similarly, touch

offsets on smaller targets (e.g., right thumb tends to hit the right of

the target and vice versa for the left thumb) represent an additional

feature to predict hand postures [6]. Further, gestures (e.g., unlock
trajectories) could be used to detect the handedness of users [45]

and combined with the majority voting approach described above.

Sequential models (e.g., recurrent neural networks (RNN) and long

short-termmemory (LSTM)) can be trainedwith sequences of capac-

itive images (i.e., trajectories of touches) to consider the information

that gestures provide for detecting handedness.

Besides software-based approaches, touchscreens with a higher

sensing resolution could be used. The Samsung SUR40 display offers

touch images in a higher resolution based on IR sensing which

containmore signal to improve the classification accuracy. However,

such touchscreens need yet to be produced and incorporated into

mass-market mobile devices. Not only are they more complex to

manufacture but would also need more resources to be operated.

Further improvements includes pre-touch sensing [31] to sense the

finger above the display or built-in inertial measurement units [21,

30, 44, 57].

10 LIMITATIONS
While we showed a usable accuracy for using the thumb l/r model

for interaction, we focused solely on capacitive images as the source

of input. This shows the feasibility of this approach as a standalone

solution without the support of further information that could

be dependent of context and position. It is left to future work to

combine other sources of input as discussed above (e.g., IMUs, touch

trajectories, etc.) to further increase the classification accuracy.

By classifying only between the main input finger and a second

finger, we increased the accuracy to a practical level compared to a

ten-finger model. Since the model expects only certain fingers (e.g.,
thumbs), all touches from other fingers are also treated as thumbs.

One solution for application developers would be to introduce a

mode exclusively for thumbs to avoid confusing the user. Another

solution would be to recognize whether the touching finger is a

thumb using a preceding model (e.g., thumb/others or IMUs).

11 CONCLUSION AND FUTUREWORK
In this paper, we investigated finger identification models based

on deep learning and the capacitive images of commodity touch-

screens. While previous work showed that capacitive images from

mobile devices do not contain sufficient signal for a reliable iden-

tification of each finger, they also showed that thumbs and index

fingers are predominantly used for input on mobile devices. Thus,

we focused on identifying fingers within different combinations of

fingers mainly used for input. We present an exploration of capac-

itive images for each finger which revealed that an identification

with visual features and basic machine learning is inferior to deep



Finger Identification on Capacitive Touchscreens IUI ’19, March 17–20, 2019, Marina del Rey, CA, USA

learning algorithms. Based on CNNs, we showed that left and right

thumbs can be differentiated with an accuracy of over 92%. To

demonstrate the usability of this model, we implemented two use

cases and evaluated the concept of thumb-aware interaction. This
includes porous interfaces and a pie menu for the non-dominant

hand which participants found intuitive and useful. Moreover, we

found that users did not perceive an increase in workload when

using thumb-specific functions. Since our contribution is purely

software-based, it can be readily deployed to every mobile device

with a capacitive touchscreen.

We are publicly releasing our data set of capacitive images com-

prising touches of all ten fingers. While we solely used the capaci-

tive images for finger identification, future work could improve the

accuracy by including further information (e.g., context, position,
and sensors) into the identification process. Moreover, due to steady

advances in the field of deep learning, our results could be further

improved by simply training new models with the same data set

in the future. Future work could also use our other models (e.g.,
thumb/index) or train user-dependent models with our scripts for

prototyping purposes.

12 DATASET AND MODELS
One outcome of the studies is a labeled dataset (CapFingerId) that
consists of capacitive images representing touches from all ten fin-

gers. We are publicly releasing the data set together with Python

3.6 scripts to preprocess the data as well as train and test the model

described in this paper under the MIT license. We further provide

the trained models, the software to run our models, and implemen-

tations of the use cases readily deployable on Android. These will

enable the community to run our models on their devices. We hope

that the provided models in combination with the dataset can serve

as a baseline that enables other researchers to further improve the

accuracy: https://github.com/interactionlab/CapFingerId.
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