
Observational and Experimental Investigation of Typing
Behaviour using Virtual Keyboards on Mobile Devices

Niels Henze
University of Oldenburg

Oldenburg, Germany
niels.henze@uni-oldenburg.de

Enrico Rukzio
University of Duisburg-Essen /

Lancaster University
enrico.rukzio@uni-due.de

Susanne Boll
University of Oldenburg

Oldenburg, Germany
susanne.boll@uni-oldenburg.de

ABSTRACT
With the rise of current smartphones, virtual keyboards for
touchscreens became the dominant mobile text entry tech-
nique. We developed a typing game that records how users
touch on the standard Android keyboard to investigate users’
typing behaviour. 47,770,625 keystrokes from 72,945 instal-
lations have been collected by publishing the game. By visu-
alizing the touch distribution we identified a systematic skew
and derived a function that compensates this skew by shift-
ing touch events. By updating the game we conduct an ex-
periment that investigates the effect of shifting touch events,
changing the keys’ labels, and visualizing the touched posi-
tion. Results based on 6,603,659 keystrokes and 13,013 in-
stallations show that visualizing the touched positions using
a simple dot decreases the error rate of the Android keyboard
by 18.3% but also decreases the speed by 5.2% with no posi-
tive effect on learnability. The Android keyboard outperforms
the control condition but the constructed shift function further
improves the performance by 2.2% and decreases the error
rate by 9.1%. We argue that the shift function can improve
existing keyboards at no costs.

Author Keywords
touchscreen; virtual keyboard; mobile phone; public study.

ACM Classification Keywords
H.5.2 Interfaces and Presentation: User Interfaces - Input de-
vices and strategies.

General Terms
Design, Human Factors, Experimentation.

INTRODUCTION
Since the introduction of the iPhone, mobile phones with
touchscreens began to dominate the smartphone market. To-
day, all major phone makers have touchscreen devices in their
portfolio. In contrast to earlier devices, today’s smartphones
are operated by touching the screen with the fingers and only
a few devices have a physical keyboard. Instead, users rely
on virtual keyboards that are operated by touching the screen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

While touchscreens and virtual keyboards have been studied
for years, understanding users’ touch behaviour remains chal-
lenging. Previous work usually studies the effect of single
aspects, such as key size or keyboard layout, on the users’
performance. Due to limited resources corresponding user
studies are often conducted with a homogenous sample and a
single device. Such studies usually try to seek a balance be-
tween internal validity (the extent to which variance is due to
the test conditions) and external validity (the extent to which
results are generalizable). Experimenters control most vari-
ables and conduct studies with a small number of participants
in a lab (high internal and low external validity). Many results
from related work are therefore based on the performance of
male right-handed students from a technical discipline that
live in the same region i.e. no equal gender split and mainly
participants from the authors’ institution.

In contrast to previous work, our aim is to observe and manip-
ulate the touch behaviour of a diverse sample, a large number
of devices, and various contexts. To collect the required large
amount of keystrokes on a virtual keyboard we developed a
mobile typing game. To attract a large number of participants
the game has been published to the Android Market. Our
approach thus allows studying a large number of users with
varying backgrounds in a large number of realistic contexts
with their own devices (low internal validity due to a high
variance but high external validity). This allowed analysing
the typing performance of users whose behaviour would have
been significantly altered in a very controlled setting. Be-
cause external factors cannot be ruled out and we have little
control over the participants the study has a low internal va-
lidity as there was no possibility to control any contextual
factors. The flip side is that the diversity of the environment
provides a higher external validity than common lab studies.

After discussing related work, we describe the game that we
developed to collect the data. We provide an overview about
the data we collected after publishing the game to the Android
Market. Following this, an analysis of the touch distribution
is provided that shows how touch contacts are skewed relative
to the keyboard’s keys’ centre. Afterwards, three approaches
to influence the users’ typing behaviour are proposed. We
report how we evaluated these approaches in an experiment
by publishing an update of the game to the Android Mar-
ket. We show that our adapted shift function improves the
performance, elevating the position of the keys’ labels is not
beneficial, and informing the user about the touched position
decreases the error rate but also decreases the speed. We close
the paper with a conclusion and an outlook on future work.

RELATED WORK
In the last decade and in particular since the emergence of the
iPhone we observed a shift from using keypads and stylus-
based interaction to finger-based interactions with touch-
screens on mobile devices. One important aspect to be con-
sidered in the design of virtual keyboards is that the output
resolution of such a touchscreen is much higher than the in-
put resolution of a human thumb or finger. This leads to
the ”fat-finger-problem” due to the difficulty to select small
targets with a much larger finger and the aspect that the fin-
ger occludes the target as well. Current smartphones address
this aspect e.g. through a visual confirmation of what has
been touched or trough callouts that show the region currently
touched in order to perform fine granular selections.

One strand of research focuses on interaction techniques that
allow the selection of small targets with a finger without
changing the size of the target while achieving an acceptable
error rate. In Shift [20] this has been achieved through call-
outs showing a copy of the area occluded by the finger in a
non-occluded area and the possibility to move a pointer in the
callout via finger movement to select the desired target. In
TapTap [15] the occluded area is also shown in a callout but
here a zoomed in copy of the occluded area is shown and the
user has to touch the desired target in the callout with a second
touch. In Escape [21] the small targets are visually changed
and indicate a direction in which the user has to drag its fin-
ger after touching it in order to select it. Those interaction
techniques are not well suited for text input as additional in-
teractions are required, which requires more time and a higher
mental effort, when compared with a simple touch.

Further research focused on the optimal size of targets while
considering the trade-off between finger size and user inter-
faces design. For almost perfect accuracy targets need to be
larger than 20 x 20 mm [10]. This means that current touch-
screen phones would be able to display only around 8 targets
while showing no other information. According to the iOS
Human Interface Guidelines [1] the optimal size of a tapable
UI element on the iPhone is 6.74 x 6.74 mm which is a com-
promise between an acceptable error rate and the available
screen size. A significant body of research investigates the
influence of target size and context on time needed for select-
ing a target and the error rate [12, 19]. Considered contextual
aspects were e.g. the actual task (e.g. inspired by Fitts’ law
or text input), device- and display-size and -type, thumb size
[2], activity [17], touch feedback [9] or one-handed or two-
handed interaction. The outcome is often a suggestion regard-
ing an optimal target size and location under consideration of
the given context and an assumption regarding acceptable er-
ror rate, task load or user satisfaction.

Relatively little research analysed how the actual location of a
target on the screen or a device’s orientation affects effective-
ness and efficiency. Early research, focusing on fixed touch-
screens mounted on a table, showed that users touch slightly
below the actual target if the screen is tilted away from the
user and that they touch above the target if its tilted towards
the user [18]. Other research showed that the location of tar-
gets on the screen has an effect on effectiveness, efficiency

and user satisfaction. Himberg et al. developed an adaptive
numerical on-screen keyboard that observes where the user is
touching the display in relationship to the displayed key [5].
This information is used to adapt the shape of the virtual keys
to improve the error rate. Similar work by [8] uses geometric
pattern matching to reduce the error rate for stylus-based text
entry. [3] developed an anchored keyboard adaptation and a
simulation suggests that it reduces the errors rate. Holz and
Baudisch investigated how crosshairs are targeted and present
a model that can reduce the error offset [6].

Karlson showed that regions which are easily to reach with
the thumb when considering one-handed interaction achieve
the best task performance and lowest perceived difficulty [7].
Karlson concludes that frequently used buttons should be
placed in those regions. Perry and Hourcade showed again
that targets within easy reach of the thumb can be reached
quicker but the accuracy is best when the targets are lo-
cated on the left, right and top edges of the screen [14].
Park et al. analysed the success rate, error rate and conve-
nience of 25 regions of a touchscreen when using one-handed
thumb input [13]. The authors also analysed the offset be-
tween indicated target and actual touch events. They ob-
served location-specific offsets and discuss the idea of ad-
justing the location of the touch recognition area to improve
the overall performance. Those findings have been extended
by Henze et al. who analysed those offsets using a very
large data set and showed that a corresponding compensa-
tion function can reduce the error rate significantly [4]. Re-
cent work of Ruchenko et al. tried to improve the perfor-
mance of virtual keyboards through data collected in a game
[16]. They showed the positive effects of providing feed-
back about where users touched so user could adapt their
behaviour. Unfortunately, only 6 persons participated in the
laboratory study and the potential advantages of key-target
resizing were only shown in a simulation and were not tested.

Our paper is the first that analyse the offset between the dis-
played keyboard keys and the actual hit locations based on a
very large data set collected in a realistic context. This allows
us, in contrast to previous research that was performed in lab-
oratory settings or which is based on a small number of touch
events, to calculate those offset vectors very precisely. Fur-
thermore are we the first to show that the application of corre-
sponding compensation functions improves performance and
reduce error rate significantly for a very large number of users
who typed in various contexts using various devices.

DESIGN OF THE GAME
To collect a large number of keystrokes on a virtual keyboard
from a number of different devices and diverse participants
we decided to collect data using a mobile typing game. Dur-
ing the design of ’Type It!’ we had to find a balance between
providing players with a game that is worth playing and a test
application that collects meaningful data.

Game play
The game play focuses on collecting basic keystrokes that
form independent words. Words are presented to the player
and the task is to type these words. The game is structured in

Figure 1. Screenshots of the game’s three stages: stars, water, and fire.

three stages called stars, water, and fire. Each stage contains
four levels and each level consists of multiple words that must
be typed. As shown in Figure 1 the keyboard is displayed in
the lower half of the screen and the words are shown in the
upper part of the screen. While playing, words are presented
in white circles with a fixed size. A circular progress bar
around the circles shows the remaining time until the word
must have been typed. The bar is coloured from red to green
to also highlight the remaining time. While the time to type
a word expires, the progress bar gets shorter. The available
time to type a word depends on the level and the number of
characters. Depending on the level, multiple words are pre-
sented simultaneously and can be typed in any order.

A word’s characters must be typed to complete it. While typ-
ing, the characters appear in a textbox just above the key-
board. The player must confirm the words by either tapping
the space bar or the enter key. If a word has been typed cor-
rectly the word’s background becomes green, the progress bar
accelerates, and a rattle sound is played. If the progress bar
gets empty the word disappears. To make a game out of the
basic task the player must complete a word in a certain time-
frame. The timeframe is reduced from word to word while
the player proceeds through a level and also depends on the
word’s number of characters. Players receive a penalty point
if a word has not been completed in the given timeframe. The
game is lost when the player collected three penalty points in
one level. Players receive scores when they complete a word.
The faster a word is typed the higher the score.

To increase the study’s internal validity, the same keyboard
is used for all devices. We used the source code of the stan-
dard Android 2.2 (’Froyo’) keyboard as basis. The Android
keyboard is designed to scale across different devices, screen
sizes, and resolutions. We adapted the keyboard by removing
keys that are not required to play the game and added code to
measure the players typing behaviour. An interesting aspect
of the Android keyboard is that the position of touch events
is internally shifted upwards by 10 ’density-independent pix-
els’ (dp). Dp is an abstract unit based on the physical density
of the screen. These units are relative to a 160 dots per inch
screen and designed so that 160dp is one inch. According to
the Android Developer Guide the ratio of dp-to-pixel changes
with the screen density, but not necessarily in direct propor-

level max. characters source
1 4 MacKenzie et al.
2 5 MacKenzie et al.
3 1 one character
4 7 MacKenzie et al.
5 1 one character
6 2 two characters
7 3 three characters
8 2 two random characters

Table 1. The text sources used for the first eight levels of the game.

tion1. In addition, if there is free space to the left (as for the
’a’) or to right of a key (as for the ’l’) this area is part of the
keys interactive region. Touching, for example, on the free
space left of the ’a’ is still considered as typing on the ’a’.

We made the game visually appealing to motivate intensive
usage. Each stage has a different animated background shown
in Figure 1. The total score is shown above the keyboard next
to the text box. Furthermore a player receives ”badges” when
successfully completing a level or achieving other goals. To
increase the long term motivation we implemented a global
and a local high score lists shown in Figure 2. Players can
share their score via twitter if they achieve a high score.

Levels and text sources
To increase the external validity and the players’ fun we
use words with different length and from different sources
throughout the levels. Table 1 provides an overview about the
first eight levels and the used words. For most levels we ran-
domly select words from the phrase set provided by [11] with
a fixed maximum number of characters. In addition, for some
levels we use all words with two or three characters from the
Official Tournament and Club Word List for Scrabble2 and
words consisting of one or two random characters. We also
vary the available time to complete the words and the number
of words. In general, the game gets more challenging from
level to level. While the first levels are very easy we assume
that the very last level is impossible to finish successfully.

Measures and consent
We collect various data about the used devices and the per-
formance of the players. An identifier for each installation is
derived from a device’s ”Android ID” to anonymize the data.
Furthermore, we collect the user’s locale (e.g. ”en GB” or
”es ES”), the device’s name (e.g. ”GT-I9000” for the Sam-
sung Galaxy S), the time zone as well as the width and the
height of the virtual keyboard in pixels. During the game we
record the presented words and the position where the player
taps the virtual keyboard. We record the position where the
player’s finger initially hit the screen and the position where
the finger lifts-off the screen. We do not record intermediate
movement as this would have led to very large data sets to
be logged and transmitted to our server later on. For the taps
we record the position before the Android keyboard shifts the
1Android Developer Guide - More Resource Types:
http://developer.android.com/guide/topics/
resources/more-resources.html
2Scrabble tournament and club word list: http://www.isc.
ro/en/commands/lists.html

http://developer.android.com/guide/topics/resources/more-resources.html
http://developer.android.com/guide/topics/resources/more-resources.html
http://www.isc.ro/en/commands/lists.html
http://www.isc.ro/en/commands/lists.html

Figure 2. Type It! in the Android market (left), a modal dialog that in-
forms the player about the study (centre), and the high score list (right).

touch events by the 10dp mentioned above. For all events we
log the time elapsed since the start of the level.

The properties of the used device are transmitted to our server
when a game is started and the data collected while playing is
transmitted after a level is finished. The data is stored inter-
nally on the phone and retransmitted after the next level if the
transmission failed. We do not store data that allows iden-
tifying individual players or installations. We inform play-
ers about the fact that data is collected to act ethically and to
conform to corresponding legislation in many countries. The
modal dialog shown in Figure 2 tells players that they are
about to participate in a study when the game is started for the
first time. In addition, the description in the Android Market
briefly outlines our intention, what we record, and what we
are trying to achieve with the collected data.

PUBLISHING IN THE MARKET
We published Type It!3 in the Android Market on April 29,
2011. Figure 2 shows the appearance of the game in the
Android Market. Till July 31, 2011 the game got installed
89,262 times according to Google’s Developer Console. In
total the game received 880 ratings with an average of 3.98
on the five point scale (the higher the better). On our server
we collected data from 80,424 installations but only 72,945
installations provided meaningful data (see below). We pro-
vide an overview about the data in the following.

Demographics
We collected data from devices with 581 different names.
Most of these names appeared, however, only a few times
and are rather exotic such as the ”Pulse Mini MG Mod”. For
104 names we collected data from more than a hundred in-
stallations. As the mobile network operators give different
names to the same device type there are in fact much less dif-
ferent devices than the 581 names suggest. The Galaxy Tab,
for example, appears with at least six different names. Af-
ter harmonizing the names for common devices, the 15 most
common devices represent 44.13% of all installations.

The collected locales and time zones show that there is a bias
towards western countries among the players. The most com-
mon locales are English speaking US (”en US”, 65.94%) and
3Type It! in the Android Market: http://tiny.cc/type_it

Figure 3. Number of collected keystrokes. The graph must be inter-
preted as on y installations more than x keystrokes have been recorded.
E.g. 40.000 installations contributed more than 200 keystrokes.

English speaking Great Britain (”en GB”, 10.44%). This is
followed by Germany (”de DE”, 1.84%), Spanish speaking
US (”es US”, 1.68%), and France (”fr FR”, 1.37%). The
other 191 locales together result in 18.72% including 64 fur-
ther English locales representing 4.77% of all installations.
The recorded time zones show a similar picture. The only
non US American or European time zone among the ten most
common ones is Asia/Calcutta.

Collected data
While we received data from 80,424 installations, not all
of them provided meaningful data. We only use data from
72,945 installations because installations provided inconsis-
tent data or we did not record a single played level. In to-
tal 952,487 levels have been played and on average 13.06
levels (SD=58.88) have been played on each installation.
On 45.94% of the installations less than 5 levels have been
played. There are, however, a few very intensive players and
21 installations, for example, contributed more than 1,000
levels each. The number of keystrokes per installation is ana-
logue. In total 47,770,625 keystrokes have been recorded and
on average 654.89 keystrokes (SD=4,149.46) have been pro-
duced on each installation. Figure 3 provides an overview
about the number of keystrokes per installation.

OBSERVED TOUCH BEHAVIOUR
We computed the distribution of the positions where the play-
ers’ fingers lift-off the screen for each key using our entire
dataset. To compute the distribution, we could either assign
a touched position to the key that fits the presented word or
to the key that is recognized by the keyboard. As the touches
are normally distributed and the error rates are low we as-
sign the position to the key recognized by the keyboard. Fig-
ure 4 shows the touch distribution for the two most common
devices: the Optimus One, a device with a 3.2 inch screen
by LG, and the Ascend, a device with a 3.5 inch screen by
Huawei. In the following we analyse the horizontal and the
vertical skew in the distribution of taps.

Vertical offset
For each key, we analysed the distribution of touch events by
computing the distance between the centre of the touch distri-
bution and the centre of the visual area of the respective key.

http://tiny.cc/type_it

Figure 4. Touch distribution of the Optimus One based on 2,407,164
keystrokes (top) and the Ascend based on 4,589,967 keystrokes (bottom).
Green regions cover 50% of all taps. Red and green regions combined
cover 80% of the taps. Black dots show the distributions’ centre and
black ellipses one standard deviation.

On average the centre of the touch distribution is 10.60 pix-
els (SD=8.79 pixels) below the keys’ centre for the Optimus
One and 8.02 pixels (SD=8.34 pixels) below the keys’ centre
for the Ascend. The 95% confidence intervals for the centre
of the touch distributions are ±0.01 pixels wide. Taking the
screen’s physical size into account this means that on the Op-
timus One players hit on average 2.24 mm below the keys’
centre and on the Ascend 1.85 mm below the keys’ centre.

The deviation from the centre varies for the different charac-
ter keys but the difference between the two devices is consis-
tent for all keys. Using the distance between the keys’ centres
and the centre of the touch distribution for the 26 character
keys as the sample, an unpaired t-test shows that the distance
is significantly different (p<.10−12, d=.91). Even though, we
found this difference using post-hoc analysis the high effect
size and the low significance level let us assume that we did
not observe the difference by chance. Table 2 shows how far,
on average for all keys, the players input is shifted below the
centre of the respective key. The 95% confidence intervals for
the centre of the touch distributions are ±0.02 pixels wide or
smaller. There is no correlation between the physical size of
the offset and the size of the screen (r=.13) but a correlation
between the physical size of the keys’ distributions standard
deviation and the size of the screen (r=.89). Thus, the data
suggest that the vertical offset does not increase with an in-
creasing screen size but the variability does.

Horizontal offset
While the vertical offset is very consistent across all charac-
ter keys the horizontal offset varies across the keyboard and
is much smaller. For the above mentioned Optimus One, the

device screen pixel offset mm offset SD
Ally 3.2in 13.23px 1.15mm 1.15mm
Droid Inc. 3.7in 14.72px 1.48mm 1.39mm
Glacier 3.8in 6.93px 0.72mm 1.32mm
Galaxy S 4.0in 12.72px 1.39mm 1.33mm
Captivate 4.0in 13.78px 1.50mm 1.34mm
Vibrant 4.0in 12.80px 1.39mm 1.35mm
Fascinate 4.0in 12.98px 1.41mm 1.37mm
Epic 4G 4.0in 13.55px 1.48mm 1.43mm
Desire HD 4.3in 9.05px 1.06mm 1.49mm
Evo 4G 4.3in 10.88px 1.27mm 1.54mm

Table 2. Average vertical offset for ten devices with a resolution of
480x800 pixels. 95% confidence intervals are ±0.02 pixels or smaller.

average horizontal offset is negligible 0.03 mm and the As-
cend’s offset is 0.07 mm. For the 50 most common devices
the average horizontal offset is below 0.1 mm. This is mainly
caused by the different offsets for individual keys. E.g. for the
Optimus One the horizontal offset for ’a’ is 5.58 pixels/1.18
mm (conf95% ± 0.05 pixels) while the offset for the ’l’ is -
5.13 pixels/1.08 mm (conf95% ± 0.06 pixels). Thus, the in-
dividual keys must be treated separately. Figure 5 shows the
average horizontal offset for all devices with a resolution of
480x800 pixels among the 50 most common devices. A neg-
ative value means that players typed right of a key’s centre
and a positive value means that players typed left of the key’s
centre. One must, however, notice that the top row covers the
whole width of the screen while the two lower rows have free
space to the left that also activates the key. In addition, the
row in the centre has also free space to the right. With this in
mind it can be seen that the average touch position is slightly
skewed towards the centre of the screen for all but those keys
with adjacent free space next to them (i.e. ’a’, ’z’, and ’l’).

Discussion
Analysing the collected data, we found that players’ taps are
systematically skewed towards the bottom of the screen along
the vertical axis. We also found that taps on keys that have
no adjacent free space next to them are skewed towards the
centre of the screen along the horizontal axis. Furthermore,
we could show that the touch-distribution differs for different
devices even if they have the same resolution and the same
screen size.

Figure 5. Average horizontal offset (in pixels) for the character keys of
the 21 most common devices with a resolution of 480x800 pixels. Nega-
tive values mean that players taped right of a key’s centre and positives
values means that players taped left of the key’s centre.

Besides the general limitations of our approach the results
are mainly limited by the fact that comparing different de-
vices means conducting a quasi-experiment. Thus, we cannot
know if the observed differences are because of the devices
itself or because of other factors. E.g. some devices might be
preferred by a person group that tends to have smaller hands
than the average (e.g. kids), users with different background
might hold the device differently, and the devices’ form fac-
tor might also have an impact. As our knowledge about the
players is very limited we cannot factor out those aspects.
Furthermore, the analysis is based on data collected using the
standard Android keyboard that shifts the users input. Even
though players still tap below the keys’ centre and the ma-
jority is certainly not aware of this shift, we cannot know the
influence of this approach.

The analysis of touch behaviour revealed a systematic skew
in the distribution of taps. By shifting the users’ input by
10dp towards the top of the screen the Android keyboard al-
ready tries to compensate this systematic skew. To our knowl-
edge, however, no published work actually showed if this
rather simple compensation function improves the users’ per-
formance. Another potential approach to influence the users’
touch behaviour is to change the design of the keys. Assum-
ing that the users try to hit the keys’ labels, shifting the po-
sition of the labels towards the upper part of the keys might
influence the users to also move their taps upwards. Finally, it
seems reasonable to assume that users are not aware that their
touch distribution is distorted. Visualizing the position where
the device recognized a touch event, users might be able to
adjust their behaviour according to the provided feedback.

INFLUENCING TOUCH BEHAVIOUR
To analyse the three approaches to influence the users touch
behaviour proposed in the previous section we design accord-
ing implementations which are discussed in the following.

Shifting touch positions
To analyse how shifting the users’ input influences the touch
behaviour we use three different ways to shift the users’ taps.
The first technique, that we call ’no shift’, does not shift the
touch events and simply uses the touch events’ raw position.
As the second technique, that we call ’native shift’ we use
the standard Android keyboard that shifts the touch events by
10 density independent pixels towards the upper part of the
screen.

For the third technique, called ’adapted shift’, we derived a
compensation function from the data described in the previ-
ous section. The technique follows the assumption that it is
best to shift the users’ input in a way that moves the centres
of the touch distributions to the centres of the keys. Figure 6,
exemplarily visualizes the compensation function computed
for the Galaxy S. For each key, we use the centres of the dis-
tribution of touch events as support points (highlighted by a
white dot in Figure 6). For each key a vector to the key’s cen-
tre is derived (shown in blue). Using linear interpolation the
shift vectors for the corners of all keys are computed based on
the support points. To avoid shifting taps off the keyboard the
respective component of the vectors located at the keyboard’s

Figure 6. Touch distribution and computed compensation function
for the Galaxy S based on 3,242 installations that provided 1,831,489
keystrokes. The white dots show the origin of the shift vectors, the yel-
low dots their destination, and the blue lines show the actual vectors.

border are set to zero. E.g. the y-component of vectors lo-
cated at the upper boundary of the keyboard is set to zero to
avoid shifting taps above the keyboard. Finally, shift vectors
for further positions are derived using linear interpolation to
produce an array of 21x5 shift vectors. All touch events on
the keyboard are shifted according to the surrounding vectors.

The touch distribution differs for different devices. Therefore,
a compensation function is computed for each of the 50 most
common devices in the dataset. For the remaining devices
a function is computed using data from all devices with this
particular resolution. However, all resolutions with less than
150,000 keystrokes in the dataset are rejected which leads to
58 different functions. The compensation functions are in-
tegrated in the Android keyboard and applied before touch
events are processed by the keyboard.

Shifting key labels
This approach is based on the assumption that users are influ-
enced by the locations of the keys’ labels and, at least to some
degree, try to hit the label. The labels are either shifted to
the upper part of the keys (’elevated labels’) or not (’default
labels’). To maintain the labels’ font size and leave room
for larger upper case characters the labels are only slightly
shifted. The centre of the labels is shifted from the centre of
the key to the upper third of the key depending on the device’s
resolution. E.g. for the Optimus One the labels are shifted by
11 pixels towards the top of the screen, the same amount of
pixels that players touches are skewed towards the bottom of
the screen. As the labels’ shift only depends on the device’s
resolution, it only roughly approximates the skew we found
in the previous section. The horizontal position is not altered.
Figure 7 shows the difference between the default and the el-
evated labels.

Showing touched positions using dots
The third approach tries to inform the user about the touched
position in an unobtrusive way. A small red dot appears as
soon as the user’s finger touches the screen. The dot follows
the touch events until the finger lift-off again and remains at

Figure 7. The two different positions of the keys’ labels. The green la-
bels show the default Android keyboard and the white labels show the
elevated labels.

Figure 8. Keyboard that shows a red dot at the position where the user
touches the screen after typing an ’f’.

this position. Thereby, the dot always shows the last touched
position. We refrain from showing former touch positions or
the movement of the finger to keep the visualization as simple
as possible to increase the understandability and minimize the
obtrusiveness. Figure 8 shows the keyboard after the user just
tapped on the ’f’.

EXPERIMENT
We conducted an experiment to analyse the effect of the pro-
posed approaches. The game was published as an update to
the Android Market after integrating the three approaches. In
the following we describe the design of the experiment, fol-
lowed by the results, and a discussion of our findings.

Design
The experiment follows an independent measures design to
allow players adapting to the respective keyboard. The three
approaches described in the previous section are used as the
independent variables. Table 3 provides an overview about
the independent variables and their degrees of freedom. In
total, the design results in 12 conditions. Installations are
randomly assigned to one of the conditions when the game
is started for the first time or when the updated version is
started for the first time. By randomly assigning installations
to one condition we assume that players are almost evenly
distributed across the 12 conditions.

Three measures are used to assess the players’ behaviour.
We assess the players’ speed by counting the number of
keystrokes and measuring the time to complete a level to de-
rive the number of keystrokes per second. In addition, we
determine the players’ performance by counting the num-
ber of keystrokes that contribute to the given words. E.g.

independet variable degrees of freedom
touch no shift

native shift
adapted shift

label default labels
elevated labels

dot no dot
dot

Table 3. The three independent variables and their degrees of freedom.

keystrokes that produced characters that are deleted after-
wards are excluded. This is used to compute the number of
correct keystrokes per second. Finally, we assess the error
rate by dividing the number of keystrokes that lead to incor-
rect characters or compensate errors by the total number of
keystrokes.

Results
We deployed an update of the game to the Android Mar-
ket on July 31, 2011 and collected data until September 19,
2011. We use the data provided by installations that updated
or newly installed the game. In total we received data from
26,586 installations. For the analysis we only consider data
provided by devices that can use one of the computed com-
pensation functions. Thereby, we consider only data from
the 50 most common devices and from the 8 most common
resolutions. Furthermore, we removed the first played level
from the data provided by each installation and data from all
installations that contributed only a single level or provided
inconsistent data, to reduce the noise in the data.

We use data from 13,013 installations that contributed
6,603,659 keystrokes by playing 120,662 levels for the fol-
lowing analysis. On average an installation contributed 9.27
levels (SD=25.54) and 507.47 keystrokes (SD=1,556.69).
The average number of installations per condition is 1084.42
(SD=36.24), the average number of played levels per con-
dition is 10,055 (SD=938.46), and the average number of
keystrokes per condition is 550,304 (SD=53,537). Because
the device types and players’ locales are consistent with our
first observation we refrain from a detailed description.

In the following we analyse the effect of the independent
variables using a three-way independent analysis of vari-
ance (ANOVA). The differences between the individual con-
ditions are analysed using Fisher’s Least Significant Differ-
ence (LSD) post-hoc test. The levels of significance when
comparing the conditions are shown in Figure 12. The term
’control condition’ is used for the condition with no shift, de-
fault labels, and no dot - i.e. the Android keyboard without
shifting the touch events by 10dp.

Speed: To assess the effect of the independent variables on
the players’ speed we compare the number of keystrokes per
seconds. The ANOVA show that the three main effects as
well as all interaction effects are significant (p<.001). Figure
9 shows the average number of keystrokes per second for all
conditions. In particular, the ’native shift with default labels
and no dot’ together with the two ’adapted shift with default
labels’ conditions result in a significantly higher number of

Figure 9. Average speed assessed through the number keystrokes per
second (error bars show standard error).

keystrokes per second than all other conditions. The differ-
ence between these three conditions is, however, not signifi-
cant. Players are 2.5% faster with one of the three conditions
compared to the control condition and players are 6.4% faster
with the fastest condition (adapted shift with default labels
and no dot) compared to the slowest condition (no shift with
elevated labels and no dot).

Performance: To assess the players’ performance we in-
vestigate the independent variables’ effect on the correct
keystrokes per second (i.e. those keystrokes that are not er-
rors and do not compensate an error). The ANOVA show
that the two main effects touch and label (p<.001) as well
as the effect of dot (p<.05) are significant. All interaction
effects are also significant (p<.001). Figure 10 shows the
performance for all conditions. For all conditions with native
shift or adapted shift, elevating the labels results in a lower
performance (between 2.2% and 6.1%). For the same condi-
tions with native shift or adapted shift, the dot also results in a
lower performance (between 0.8% and 3.5%). The results for
the conditions without shift are mixed. For these conditions,
however, the dot increases the performance. Comparing the
native shift and the adapted shift with default labels and no
dot, shows that that performance increases by 2.3% with the
adapted shift. Compared to the control condition, the adapted
shift with default labels and no dot (the condition with the
highest performance) has a 5.0% higher performance.

Error rate: To determine the error rate we divide the num-
ber of keystrokes that are errors or compensate an error by
the number of the remaining keystrokes. The ANOVA shows
that all main effects as well as all interactions are significant
(p<.001). Figure 11 shows the error rate for all conditions.
Pair wise comparison of conditions with the same shift func-
tion and the same labels show that the dot always reduces
the error rate (between 3.8% and 18.3%). Compared to the
control condition, the native shift with default labels and no
dot (the standard Android keyboard) has a 2.2% higher error
rate. Adapted shift with default labels and no dot (the An-
droid keyboard with adapted shift) decreases the error rate
by 7.1% compared to the control condition. The native shift
with default labels and dot (the condition with the lowest error
rate) has a 16.4% lower error rate than the control condition.

Figure 10. Average performance assessed through the number of correct
keystrokes per second (error bars show standard error).

Learnability with dots: The assumption behind showing the
touched position to the user was that users can adapt their be-
haviour using the provided feedback. Therefore, we analyse
how the error rate, with and without dots, changes over time.
We computed the error rate after playing 2 to 11 levels. To
determine the difference between installations in the ’no dot’
conditions and those in the ’dot’ conditions we normalized
the error rate to a percentile scale. Thus, 100% is the average
error rate over all conditions after playing a certain number
of levels. A larger percentage means an above-average error
rate while a lower percentage means a below-average error
rate. Figure 13 contrasts the results for installations in the
’dot’ conditions with installations in the ’no dot’ condition.
The correlation between the number of played level and the
difference of the error rate is r=-0.41. This small inverse cor-
relation suggests that the difference of the error rate slightly
decreases when players get more experienced. Thus, players
in the ’dot’ conditions do not further improve their error rate
compared to players in the ’no dot’ conditions.

Discussion
Using an experiment we compared three approaches to influ-
ence the users’ behaviour when typing on a virtual keyboard

Figure 11. Average error rate assessed by dividing the number of
keystrokes that are errors or compensate an error by the total number
of keystrokes (error bars show standard error).

Figure 12. Significance levels for comparison of the individual conditions
and the three depended variables using Fisher’s LSD.

Figure 13. Normalized error rate for installations in the ’dots’ and the
’no dots’ conditions for the first 11 played levels. Error bars show stan-
dard error.

using data provided by 13,013 installations, 120,662 played
levels and 6,603,659 touch events.

Shifting touch positions: Using the default labels and no
dot the shift function provided by the Android keyboard re-
sults in 2.4% higher speed, 2.7% higher performance, and
a 2.2% higher error rate compared to the control condition.
The advantage for the adapted shift function is even higher.
Using the adapted shift results in 2.6% higher speed, 5.0%
higher performance, and a 7.7% lower error rate compared to
the control condition. The results show that the native shift
function improves the users’ typing. The adapted shift func-
tion can, however, further improve the users’ performance by
2.2% and decrease the error rate by 9.1% when compared to
the standard Android keyboard.

Shifting key labels: For all conditions with a shift function
elevating the labels’ position decreases the speed, decreases
the performance, and increases the error rate for the Android
keyboard. The only condition that improved by elevating the
labels is without shift and with dot. Still, the overall results

strongly suggest that elevating the labels’ position to the up-
per part of the key does not improve the users’ typing.

Showing touched positions using dots: It is found that vi-
sualizing where the user’s finger lift-off the keyboard using
a dot decreases the error rate for all conditions. Adding the
dot to the control condition, for example, decreases the error
rate by 16.9% and adding the dot to the Android keyboard de-
creases the error rate by 18.3%. For all conditions with the na-
tive or the adapted shift function, however, the dot decreases
the speed up to 5.2% and also decreases the performance. To
reduce the error rate users must pay attention to the dot. We
assume that this attention spend on the dot reduces the speed
and as a consequence also the performance.

Limitations: In line with previous work that investigates typ-
ing on virtual keyboards one limitation of the study lies in the
task that is used to collect the data. While other work asks
participants to copy text, often in a highly controlled envi-
ronment using a single device, our task is part of a typing
game. Using a public game, however, has the advantage that
the study has a high external validity. It can be assumed that
users have more diverse backgrounds and use the game in
more diverse contexts than what can be achieved in common
lab studies. Furthermore, the study is not limited to one spe-
cific device but considers a broad range of devices. This is
especially important because our observation of the touch be-
haviour showed that the device influences how users type.

As we collected data from players that installed the game at
their own will we have very limited control over the partici-
pants. We cannot control who plays the game and when they
stop playing. E.g. the probability that players with a low per-
formance stop playing early might be higher than for players
with a high performance. The used approach, however, en-
ables to attract a truly large sample from all over the world.
Instead of conducting a study with a small homogeneous sam-
ple, as it is often common in other studies, the large sample
and the participants diversity increases the study’s validity.

CONCLUSION
We investigated the touch behaviour on mobile devices’ vir-
tual keyboards. To observe the behaviour of a large number
of users we developed a typing game. Using this game we
collected 47,770,625 keystrokes that have been produced by
72,945 installations playing 952,487 levels. Analysing the
data shows that players touch systematically below the centre
of the keys (e.g. 12.72px or 1.39mm for the Galaxy S). Fur-
thermore, we found no strong correlation between the touch
skew and the devices’ size. It can be concluded that other
factors, such as the devices’ form factor or the devices’ user
groups, have a stronger effect on the typing behaviour. We
used the collected data to identify three approaches that might
influence the typing behaviour positively. We developed a
function that compensates the systematic skews found in the
touch distribution. Furthermore, we shift the keys’ labels to
the upper part of the keys and show the position where the
user’s finger lift-off the screen using a simple dot.

To compare the three approaches we conducted an experi-
ment by publishing an update of the game. For the experi-

ment with three independent variables we collected data from
13,013 installations that contributed 6,603,659 keystrokes by
playing 120,662 levels. The results disprove our assumptions
that elevating the position of the keys’ labels is beneficial.
Showing the users where they touch using a dot clearly im-
proves the error rate. The error rate for the standard Android
keyboard, for example, is decreased by 18.3%. The dot, how-
ever, also decreases the typing speed and has no positive ef-
fect on learnability. The usefulness of this feedback there-
fore depends if the error rate or speed is more important. We
showed that the simple shift function provided by the stan-
dard Android keyboard improves the users’ speed but pro-
vides no relevant improvement for the error rate. The adapted
shift function that we derived from our observation, however,
further improves the performance by 2.2% and decreases the
error rate by 9.1% compared to the Android keyboard. Be-
cause this shift function can be used as a drop-in replacement
for the Android keyboard’s shift function we assume that it
can improve the typing on current smartphones at no costs.

The conducted studies have a low internal validity but, com-
pared to common lab studies, a very high external validity.
Our approach has the advantage that the results are based on
a very large number of users, the participants are likely rep-
resentative for Android users, and the data has been collected
in real life contexts from users using their own devices. We
assume that the very large number of observed users is by
nature representative for smartphone users. There are, how-
ever, also disadvantages of the used approach. Studies with
a high external validity, such as ours, enable to observe the
users real behaviour. In contrast, studies with a high internal
validity that investigate isolated aspects might be better suited
to find the causes for the observed behaviour.

The collected data provides a rich source of information. We
would like to share the data with other to enable further anal-
ysis. In particular, analysing the data provided by different
devices could provide interesting insights. Furthermore, the
data could be used for analysing touch sequences to dynam-
ically adapt the keyboard while typing words. We are inter-
ested in using the game to investigate further aspects that in-
fluences the users’ typing behaviour. E.g. testing further vi-
sual keyboard designs and shift functions. We also aim at
investigating more radical keyboard designs and if other wid-
gets can be investigated using mobile games.

Acknowledgments: Parts of this work were conducted
within the context of the Emmy Noether research group Mo-
bile Interaction with Pervasive User Interfaces funded by the
German Research Foundation (DFG).

REFERENCES
1. Apple Inc. iOS Human Interface Guidelines, 2010.

2. Balakrishnan, V., and Yeow, P. A study of the effect of
thumb sizes on mobile phone texting satisfaction.
Journal of Usability Studies 3 (2008).

3. Gunawardana, A., Paek, T., and Meek, C. Usability
guided key-target resizing for soft keyboards. In Proc.
IUI (2010).

4. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
Analysis and improvement of touch performance in the
large. In Proc. MobileHCI (2011).

5. Himberg, J., Häkkilä, J., Kangas, P., and Mäntyjärvi, J.
On-line personalization of a touch screen based
keyboard. In Proc. IUI (2003).

6. Holz, C., and Baudisch, P. Understanding touch. In
Proc. CHI (2011).

7. Karlson, A. Interface Design for Single-Handed Use of
Small Devices. In Proc. UIST (2008).

8. Kristensson, P.-O., and Zhai, S. Relaxing stylus typing
precision by geometric pattern matching. In Proc. IUI
(2005).

9. Lee, S., and Zhai, S. The performance of touch screen
soft buttons. In Proc. CHI (2009).

10. Lewis, J. R. Literature review of touch screen research
from 1980 to 1992. In IBM Technical Report 54.694
(1993).

11. MacKenzie, I., and Soukoreff, R. Phrase sets for
evaluating text entry techniques. In Adjunct Proc. CHI
(2003).

12. Parhi, P., Karlson, A., and Bederson, B. Target size
study for one-handed thumb use on small touchscreen
devices. In Proc. MobileHCI (2006).

13. Park, Y., Han, S., Park, J., and Cho, Y. Touch key design
for target selection on a mobile phone. In Proc.
MobileHCI (2008).

14. Perry, K., and Hourcade, J. Evaluating one handed
thumb tapping on mobile touchscreen devices. In Proc.
GI (2008).

15. Roudaut, A., Huot, S., and Lecolinet, E. TapTap and
MagStick: improving one-handed target acquisition on
small touch-screens. In Proc. AVI (2008).

16. Rudchenko, D., Paek, T., and Badger, E. Text text
revolution: A game that improves text entry on mobile
touchscreen keyboards. In Proc. Pervasive (2011).

17. Schildbach, B., and Rukzio, E. Investigating selection
and reading performance on a mobile phone while
walking. In Proc. MobileHCI (2010).

18. Sears, A. Improving touchscreen keyboards: Design
issues and a comparison with other devices. Interacting
with computers 3 (1991).

19. Sears, A., and Zha, Y. Data entry for mobile devices
using soft keyboards: Understanding the effects of
keyboard size and user tasks. International Journal of
Human-Computer Interaction 16 (2003).

20. Vogel, D., and Baudisch, P. Shift: a technique for
operating pen-based interfaces using touch. In Proc.
CHI (2007).

21. Yatani, K., Partridge, K., Bern, M., and Newman, M.
Escape: a target selection technique using visually-cued
gestures. In Proc. CHI (2008).

	Introduction
	Related Work
	Design of the Game
	Game play
	Levels and text sources
	Measures and consent

	Publishing in the Market
	Demographics
	Collected data

	Observed Touch Behaviour
	Vertical offset
	Horizontal offset
	Discussion

	Influencing Touch Behaviour
	Shifting touch positions
	Shifting key labels
	Showing touched positions using dots

	Experiment
	Design
	Results
	Discussion

	Conclusion
	REFERENCES

