
Insights into Layout Patterns of Mobile User Interfaces
by an Automatic Analysis of Android Apps

Alireza Sahami Shirazi, Niels Henze,
Albrecht Schmidt

University of Stuttgart, Stuttgart, Germany
firstname.lastname@vis.uni-stuttgart.de

Robin Goldberg,
Benjamin Schmidt, Hansjörg Schmauder
University of Stuttgart, Stuttgart, Germany
firstname.lastname@studi.informatik.uni-

stuttgart.de

ABSTRACT
Mobile phones recently evolved into smartphones that pro-
vide a wide range of services. One aspect that differentiates
smartphones from their predecessor is the app model. Users
can easily install third party applications from central mobile
application stores. In this paper we present a process to gain
insights into mobile user interfaces on a large scale. Using the
developed process we automatically disassemble and analyze
the 400 most popular free Android applications. The results
suggest that the complexity of the user interface differs be-
tween application categories. Further, we analyze interface
layouts to determine the most frequent interface elements and
identify combinations of interface widgets. The most com-
mon combination that consists of three nested elements cov-
ers 5.43% of all interface elements. It is more frequent than
progress bars and checkboxes. The ten most frequent patterns
together cover 21.13% of all interface elements. They are all
more frequent than common widget including radio buttons
and spinner. We argue that the combinations identified not
only provide insights about current mobile interfaces, but also
enable the development of new optimized widgets.

Author Keywords
mobile applications; user interface; design, pattern; widget;
android; reverse engineering; apps

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User
Interfaces. - Graphical user interfaces.

INTRODUCTION
Over the last decade, mobile phones became the most ubiq-
uitous devices. Worldwide mobile phone subscriptions grew
to almost 6 billion in 2011 [25]. Recently, mobile phones
evolved from simple phones to sophisticated smartphones
with various sensors, powerful processors, and run third-party
applications. In particular, with the emergence of the iPhone,
Android, and recently Windows Phone, smartphones became
open for third-party developers. The market share of smart-
phones is dramatically increasing. According to Nielsen half
of the mobile subscribers in the US own a smartphone [21].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

Figure 1. Four common UI element combinations extracted from 400
popular apps downloaded from Google Play. Combinations are describe
as follows: <parent element>–<child element1>,<child element2>

Smartphone users are no longer limited to the applications
provided by the phone’s manufacturer. One of the main as-
pects that differentiate smartphones from their precursor is
the app model. Users can easily install third-party appli-
cations from application stores. Development environments
and centralized application stores are available for all major
smartphone platforms. They enable developers to easily build
and distribute mobile applications. Together, over a million
applications are available for current smartphones in the most
prominent stores, i.e., Google Play and Apple’s App Store.
The most popular apps have been installed several million
times. In September 2012, Google reported ”... We’ve now
crossed 25 billion downloads from Google Play ...” [3].
Today, popular smartphone applications are among the most
widely used applications in general. A number of disciplines
try to learn about the nature of mobile applications from their
own perspective. The general approach is to collect a large
number of mobile applications and develop automatic means
to analyze them. Software engineering researchers, for ex-
ample, developed techniques that automatically find privacy
leaks in Android applications [10]. They show that widely
used applications leak private data. Obviously, it is crucial
that applications are not only trustworthy but also usable by
a diverse population. It is therefore important to investigate
the nature of existing mobile applications from a user inter-
face design perspective. Previous work developed techniques
for model driven engineering [23], investigated formal meth-
ods for prototyping and simulating mobile and ubiquitous
systems [29] and presented interactive tools for reverse en-

gineering UI code [28]. While previous work formalizes and
generates UIs through model-driven design it is necessary to
learn about currently used patterns to close the gap between
formal approaches and commercial systems.
In this paper, we investigate a large number of popular An-
droid applications. We automatically download and ana-
lyze 400 popular Android applications from Google Play,
Google’s official application store for Android devices. We
decode the application to reconstruct their source. We re-
trieve and assess the layouts, user interface elements, and the
features used. We determine common interface elements and
identify patterns how they are combined and used. The con-
tribution of this paper is threefold: (1) we describe the dis-
assembling of Android application packages (APK) and how
information can be retrieved from the decoded files, (2) we
report the most common features and components used by
popular mobile applications, and (3) we determine the most
common user interface elements and identify common com-
binations (see Figure 1 for an example).
The paper is constructed as follows: first we discuss related
work followed by an explanation of how to disassemble An-
droid application packages. Then, we describe the data set
used for our investigation. We report features and compo-
nents extracted from the data set. Later, we discuss the anal-
ysis of user interface elements and the patterns retrieved. We
address the limitations we come across. Finally, we conclude
our findings and describe potential future work.

RELATED WORK
Mobile applications are currently distributed through market
places, such as Apple’s App Store and Google Play. Users
access these marketplaces to download applications. Re-
searchers continually investigate, collect data, and monitor
users’ application usage behavior to gain insights into how
users interact with their mobile phones. For example, Cui
and Roto investigated how people surf the mobile web [8].
They state that the duration of web sessions is short in gen-
eral, but browser usage is longer if users are connected to
WiFi. Böhmer et al. conduct a large-scale study and log
detailed application usage information from mobile Android
devices [7]. They report basic and contextual descriptive stat-
ics. Moeller et al. analyze the update behavior and security
implications in the Google Play market [20]. They describe
that users do not install an update even seven days after it is
released. The usage of smartphone-based services is exam-
ined by observing 14 teenage users in [22]. It is reported that
usage is highly mobile, location dependent, and serves multi-
ple social purposes. Verkasalo [31] also shows that users use
certain types of mobile services in certain contexts. He finds
that users mostly use browsers and multimedia services when
they are on the move, but play more games while they are at
home. Balagtas et al. assess different user interface designs
and input techniques for touch-screen phones [6].
Another strand of work explored users’ behavior while us-
ing and interacting with mobile applications. Henze et al.,
for example, assess the touch performance on mobile applica-
tions [13]. They derive a compensation function that shifts the
users’ touches to reduce the number of errors. Further, they
investigate the typing behavior using a virtual keyboard on

mobile phones [14] and conclude that visualizing the touched
positions using a simple dot decreases the error rate of the
Android keyboard. Leiva et al. [17] investigate mobile ap-
plication interruptions caused by intentional switching back
and forth between applications and unintended interruptions
caused by incoming phone calls. They report that these inter-
ruptions rarely happen. But when they do, they may introduce
a significant overhead.
Furthermore, various projects have investigated dynamic
analysis of mobile applications. Szydlowski et al. discuss
challenges for dynamic analysis of iOS applications [30]. The
challenges are mainly driven from graphical user interfaces.
Lim and Bentley use AppEco, an artificial life model of mo-
bile application ecosystems, to simulate the Apple’s iOS app
ecosystem [18]. Researchers have presented methodologies
for automatically analyzing applications to find possible se-
curity problems and user interface bugs. Gilbert et al. pro-
pose a security validation system that analyzes applications
and generates reports of potential security and privacy vio-
lation [11]. Permissions requested by Android applications
are used to detect potentially malicious applications [9]. Di
Cerbo et al. present an approach to detect malware Android
applications. The approach relies on the comparison of the
Android security permissions of each application with a set
of reference models for applications that manage sensitive
data. Andromaly is another framework for detecting malware
on Android mobile devices [27]. It collects various features
and events from the phone and classifies them using machine
learning anomaly detectors. Mahmood et al. describe an anal-
ysis technique for automated security testing of Android apps
[19]. The technique generates a large number of test cases for
fuzzing an app and testing its security. Hu and Neamtiu in-
troduce an approach to verify graphical user interface (GUI)
bugs in Android applications [16]. It automatically generates
test cases and feeds the application random events to generate
trace files and analyze them. AndroidRipper is an automated
technique that test Android apps via their GUI [5]. An app’s
GUI is explored with the aim of exercising it in a structured
manner. Zhang et al. also present technique to find invalid
thread access errors in multithread GUI applications [32].
In contrast to previous work and instead of accessing cer-
tain users’ interaction or application usage, we analyze An-
droid applications’ source code to obtain insight into com-
mon components, features, and user interface elements used.
To achieve this goal, we downloaded 400 of the most popular
Android application packages (APKs) from the marketplace
and analyzed them to extract valuable information.

DISASSEMBLING ANDROID APPLICATIONS
At the conception of this paper, the Android ecosystem is
the most popular smartphone platform. Like other mobile
platforms, the Android system is centered on the concept of
apps that usually focus on a set of specific services. An-
droid phones come with a number of pre-installed apps, in-
cluding the phone app used to make and receive phone calls
and the web browser app for surfing the web. Android users
can install additional apps from Android marketplaces such as
Google Play, Google’s application store for the Android plat-
form. Android apps are developed using the Android Soft-

ware Development Kit (SDK). It provides a frame for devel-
oping apps and ensures that a certain structure and metadata
is provided by the developer. An app is then packaged into
an Android application package (APK) file. APKs are file
archives used to install applications on the Android system.

Structure of Android applications
Android applications are typically written in the program-
ming language Java using the Android SDK. The Android
SDK compiles the source code along with all data and re-
source files, into an APK file, which is an archive file with an
.apk suffix. All of the code and resources in a single APK file
is considered as one application.

The essential building blocks of an Android app are the appli-
cation components. While there are different types of appli-
cations components, users only interact with so called activ-
ities, directly. The Android developer guidelines [1] recom-
mend that each activity represents a single screen with a user
interface. An application often consists of multiple activities
but typically, one activity of an app is specified as the “main”
activity, which is presented to the user when the application is
launched. Having more main activities in an app allows users
to enter the app from different starting points (e.g., launch the
Skype app from the home screen or from the address book).
An activity can start other activities to perform different ac-
tions. Only one activity can be in the foreground and thus,
users can only interact with one activity at a time.

An activity’s user interface is structured by a hierarchy of
views. Each view controls a rectangular space within the ac-
tivity’s window and can respond to user input. For example,
a view can be a button that initiates an action when the user
touches it. The most common way to define a layout (accord-
ing to the developer guidelines) is to use XML layout files.
These XML layout files offer a human-readable structure for
the UI’s layout, similar to HTML. However, it is also possible
to define a layout programmatically.

Android developers can use resources to separate graphical
objects and texts from the source code. Most importantly, re-
sources include the XML layout files that describe the user
interface, images, and texts. All resources are organized in
files and folders that are located in the ‘res’ folder of the ap-
plication project. An app can contain resources for differ-
ent languages, screen resolutions, and screen sizes. The re-
sources enable to provide a single APK that supports a range
of devices and is localized to different regions. Resources are
referenced in the source code and the layout files.

An app’s important metadata is specified in the ‘manifest’ file.
This file specifies all activities and, in particular, defines an
app’s main activities. Having no main activity means that the
app is started without any user interfaces (e.g, a service runs
in the background). Furthermore, it declares which security
permissions the app requests (e.g., Internet access, activation
of the vibrator, or retrieval of location information).

Decoding Android application packages
To analyze Android apps from third parties, we extract the
content from APKs and convert the included files to a human-
readable form. To decode an APK, we use the apktool [2], an

Figure 2. Steps to decode Android application packages

open-source tool for reverse engineering binary APK files.
This tool decodes APK files almost to the original Android
application project. The apktool reconstructs the complete
resource folders including all layout files, pictures, anima-
tions, and string files. Furthermore, it provides the source
code of the app in the intermediate ‘Smali’ format [4]. Smali
is an assembler language that is equivalent to the byte code
for Android’s Java Virtual Machine. The files resulted from
unpacking an APK are used for analysis of its source code and
to obtain insights into features and components used. Figure
2 shows the steps required to unpack an AKP file.

Inspecting decoded application packages
After decoding an APK file, we then analyze the app’s files
and folders. Next, we analyze the metadata specified in the
app’s manifest. Finally, we determine the interface layouts
included. In the following we describe the information that
we retrieve in each step.

Analysis of files & folders structures
To determine information about resources, we first parse the
APK’s res folder to inspect the names of the files and folders.
An Android application can have multiple sets of resources,
for example, to support multiple languages. Each resource set
is customized for a different device configuration. The An-
droid OS automatically chooses the resources that best match
the device. To create alternative resources, specific suffixes
are used in the files’ and folders’ name. Suffixes can be lan-
guages indicated by region codes (e.g., DE for German, FR
for French), screen sizes (e.g., small, normal, large, xlarge),
and screen orientation (e.g., port for portrait mode, land for
landscape mode). Analysis of the res folder reveals the fol-
lowing information:

Graphical Objects: Static images are located in the
res/drawable/ folder and animations are located in the
res/anim/ folder. We can determine the number of images
and animations as well as their formats.

Languages: The res/value–<suffix>/ folders contain the
texts used by the application. We use the names of the fold-
ers to determine the number of languages supported in an
app.

User Interface layouts: The XML files that describe the lay-
out of the user interface are located in res/layout–<suffix>/.

By parsing this folder, we can estimate how many user in-
terfaces the application has.

Screen resolutions: We examine the suffixes of the res
folder to identify devices an app specifically addresses
(with a specific screen size or a screen pixel density). If
no specific suffix is used, it can be assumed that the appli-
cation’s layouts support all screen sizes. However, it is also
possible to optionally specify screen sizes an app supports
in the manifest file.

Analysis of the Metadata
We determine an app’s metadata by analyzing its manifest
file. The manifest includes the application name and de-
scribes the components of the application. We extract the per-
mission(s) an app requires. In addition, the manifest also con-
tains the app’s minimum and the maximum application pro-
gramming interface (API) level. This API level is equivalent
to a specific version of the Android platform. All activities of
the app are also declared in the manifest. We determine the
number of activities as well as the main activities that can be
identified through the android.intent.action.MAIN attribute.

User Interface Layouts and Elements
To determine which activities use which layouts, we combine
activities declared in the manifest file with the activity’s cor-
responding Smali file. For each activity, we parse the Smali
file to find the call of the SetContentView() method. This
method includes an ID for the layout file that is used to render
the user interface on the screen. With this ID, it is possible to
determine the respective XML layout file. Thus, it is possible
to parse the layout files and extract UI elements used in the
layouts. The elements in the layout are either Android stan-
dard elements such as a <TextView>— a widget for display-
ing texts—or custom elements implemented by developers.

DATA SET
To analyze typical Android applications we downloaded
APKs from the Google Play market. We implemented a
script that downloads APKs using the android-market-api1.
The script connects to the market’s server using an existing
Google account that is linked to an Android device. The
script can download all free apps that are not protected. Using
the API, we downloaded and stored the APKs of the top 400
highest ranked apps from the Google Play market on August
20th, 2012.
We configured the query to the Google Play server to receive
free applications ordered by descending popularity. We also
store additional information provided by the market while
downloading the APKs such as the application name, its cate-
gory, users’ average rating, and its popularity rank. The used
Android Market API requires an Android device ID in order
to download apps from the store. We used a HTC Wildfire’s
device ID to download apps and did not explicitly specify any
locale information. However, the device’s locale used was
German. Also the SIM card installed on the device and the IP
address of the server were both from Germany. Among the
1The android-market-api is an open-source API for the Android
Market. It is not affiliated with Google: http://code.google.
com/p/android-market-api/ accessed 17.12.2012

Category N Rating Activities Layouts Images
Tools 58 4.37 14.00 29.64 34.47
Communication 37 4.29 36.65 88.16 65.22
Entertainment 34 4.17 21.41 49.68 23.56
Efficiency 34 4.38 25.32 65.38 60.29
Social Networks 34 4.11 44.44 118.88 74.71
Music & Audio 31 4.19 24.97 66.35 59.77
Photography 21 4.34 24.57 60.76 61.81
Shopping 19 4.03 36.89 106.53 56.89
Books & References 16 4.25 18.94 54.81 50.50
Travel & Locales 15 4.21 40.73 131.47 73.73
Lifestyle 14 4.30 37.57 89.43 41.43
Health & Fitness 13 4.28 50.77 93.92 55.38
Media & Videos 12 4.34 22.92 53.08 37.75
Personalization 11 4.44 15.45 55.82 29.55
News & Magazines 11 4.10 24.73 66.09 40.09
Finances 10 4.26 61.10 118.40 44.20
Office 8 4.12 25.25 99.38 69.38
Weather 8 4.24 18.13 36.25 166.50
Sports 7 3.98 40.00 136.29 46.86
Software & Demos 4 4.28 1.25 1.75 0.00
Learning 3 3.72 39.33 88.00 78.67

Table 1. The distribution of the apps downloaded and analyzed within
the different application categories. The last three columns show the
average number of activities, layouts, and images in the respective cate-
gory.
400 apps downloaded, some were clearly associated with lo-
cales outside Germany, e.g., “Domino’s Pizza USA” or “FOX
News”. Therefore, we assume that our approach did not dis-
tort the popularity order due to our language or locale config-
uration.
We downloaded APKS from 21 different categories. Cate-
gories with the highest numbers of apps are “Tools” (14.5 %)
and “Communication” (9.2 %). Table 1 shows the number of
applications in each category. We intentionally did not down-
load games. The average rating of the applications was 4.25
(Median = 4.36, SD = 0.45). 80 % of the applications had
a rating of four or higher. It is obvious that popular apps are
likely to be highly rated. However, there were few applica-
tions with low ratings, i.e., the app “More for me” from the
“Shopping” category with a 1.88 rating and a rank of 131.
The three categories with the best average rating were “Per-
sonalization”, “Efficiency”, and “Tools” (ratings from 4.37 to
4.44). Lowest average ratings were found in the categories
“Shopping”, “Sports”, and “Learning” (3.72 to 4.03).

STATISTICS OF POPULAR ANDROID APPLICATIONS
After downloading the APKs, we decoded them using the
aforementioned process. This resulted in 778,071 files or-
ganized in 47,706 folders.

Languages
We assessed the applications’ resources that can be used to
internationalize them to determine which languages an app
explicitly supports. For all inspected apps, English is the de-
fault language. Including regional variation (e.g., ”en us” and
”en gb”) we found a total of 235 other languages. On aver-
age, an app supports 12.74 languages (SD=16.42). 47 apps
support only the default English and 56 support an additional
language. More than half of the apps (216) support five or
more languages. Figure 3 shows the 12 most frequently sup-
ported languages (without the default English). The most
common languages besides English are Chinese (63.8 %),

http://code.google.com/p/android-market-api/
http://code.google.com/p/android-market-api/

Figure 3. The 12 most frequently supported languages (besides English).

Spanish (56.6 %), and French (47.6 %). In total, 30 differ-
ent languages are supported by more than 50 apps (12.5 %).

Supported screen
Parsing the resource files’ suffixes reveals which applications
support devices with different pixel densities and screen sizes.
For the pixel density (dpi) there are four suffixes: ldpi (low
dpi), mdpi (medium), hdpi (high dpi), and xhdpi (extra high
dpi). The analysis shows that only 173 apps explicitly sup-
port all four variants and 26 apps do not specifically address
any density type. 93% of the applications support hdpi, 75%
mdpi, 70% lpdi, and 50% xdpi. Four suffixes are used for
the screen size: small (low-density QVGA screen), normal
(medium-density HVGA screen), large (a medium-density
VGA screen), xlarge (medium-density HVGA screen). Nine
apps support all four screen sizes explicitly and 215 apps do
not specify any screen size. The screen size “large” is the
most common size supported by 170 apps.

It should be mentioned that a screen size or screen density
suffix does not imply that the resources are only for screens of
that size or density. If resources with suffixes that match the
current device configuration are not provided, the system may
use whichever resources match best. This can be a reason that
most apps do not explicitly provide specific resources.

App’s launchers (main activities)
As previously mentioned, apps can have more than one main
activity. Parsing the manifest files shows that 10 apps have no
main activity, 300 apps have one main activity, and 90 apps
that have more than one main activity. The Kayak app has the
highest number of main activities (64).

Analysis of the permissions
We investigated the metadata provided by each application by
analyzing their manifest files. In total, we extracted 355 dif-
ferent permissions (M=11.2 permissions per app, SD=7.83).
In particular, we looked at Android standard permissions the
applications require. From the 355 permissions, 121 are
Android standard permission (M=9.6 permissions per app,
SD=6.6). Figure 4 shows the ten most common Android
standard permissions. The three most frequently used per-
missions are Internet access (8.7% of all extracted permis-
sions), the permission to determine if network access is avail-
able (7.9%), and the permission to store data on the mobile
phone’s external storage (6.8%).

Figure 4. The most frequent Android standard permissions.

Tactile Feedback. Most Android devices are equipped with
a vibration motor that is used to provide tactile feedback. A
permission is required to activate the vibration motor. The
results show that 47.25% of the applications use vibration
motor to provide tactile feedback.

Location Information. We were also interested in the use of
contextual information such as the user’s location. In to-
tal, 190 applications can access the device’s location. 154
apps use the fine location information provided by the GPS
sensor and 147 accessed coarse location details (e.g., de-
termined via the phone network’s Cell-ID or visible WiFi
networks). 111 applications can access both, the fine loca-
tion and the coarse location of the device.

Connectivity. 96.25% of the applications use the Internet ac-
cess permission. Further analysis reveals that 10.25% of the
applications use the Bluetooth connectivity, 8.25% have the
permission to send SMS, and 2.5% use near field commu-
nication (NFC). It should be mention that not all mobile
phones support the NFC technology.

Number of User Interfaces
To examine whether the user interface of applications from
various categories differ, we conducted a statistical analysis
of the most frequent categories in our data set. Because of
the small sample size for some categories we focus on the ten
most frequent categories (N>=15). We use the number of
activities, the number of layouts, and the number of images
as indicators for the complexity of the user interface. Table 1
provides an overview of the number of activities, layouts, and
images for each category. To determine if categories are dif-
ferent we did an analysis of variance (ANOVA). As we were
doubtful that the variances are equivalent, a Games-Howell
post hoc test is used for the pairwise comparison.

Activities
After extracting the number of activities for each app, we
assessed if the average number of activities differ between
the ten most frequent categories. Levene’s test indicates that
the assumption of homogeneity is violated F(9,289)=3.89,
p<.001. An ANOVA test reveals a significant difference be-
tween the categories, F(9,289)=5.14, p<.001. Games-Howell
post hoc test shows six pairwise significant differences be-
tween the categories. Applications in the category Tool
(M=14.00, SD=17.34) have fewer activities than applica-
tions in the categories Social Networks (M=44.44, SD=27.64,

Figure 5. The average number of activities (left), layouts (center), and images (right) for the ten categories with the most frequent applications in our
data set. Error bars show standard error.

p<.001) and Shopping (M=36.89, SD=24.07, p<.05). En-
tertainment apps (M=21.41, SD=17.34) have significantly
less activities than Social Networks applications (p<.01).
Furthermore, applications in the Social Networks category
have significantly more activities than Music & Audio apps
(M=24.97, SD=19.41, p<.05) and Books & References apps
(M=18.94, SD=17.83, p<.01).

Layouts
We further investigated if the average number of layouts per
application statistically differ between the categories. Again,
Levene’s test indicates that the assumption of homogeneity
is violated F(9,289)=4.44, p<.001. An ANOVA reveals a
significant difference between the categories, F(9,289)=6.87,
p<.001. Games-Howell post hoc test reveals eight pair-
wise significant differences between the categories. Ap-
plications in the category Tool (M=29.64, SD=35.52) have
less layouts than applications in the categories Communica-
tion (M=88.16, SD=98.72, p<0.05), Efficiency (M=65.38,
SD=45.99, p<.01), Social Networks (M=118.88, SD=76.21,
p<.001), Music & Audio (M=66.35, SD=51.13, p<.05), and
Shopping (M=106.53, SD=74.39, p<.01). Applications in
the Entertainment category (M=49.68, SD=57.74) have fewer
layouts compared to applications in the category Social Net-
works (p<.01). Efficiency applications have fewer layouts
than Social Network applications (p<.05).

Images
Further, we compared the average number of images per ap-
plication. Levene’s test shows that the assumption of homo-
geneity is not violated F(9,289)=0.64, p=.77. An ANOVA
test revealed no significant difference between the categories,
F(9,289)=1.03, p=.413. We therefore, refrained from con-
ducting a post hoc analysis.

Correlations
Looking at the charts shows in Figure 5 suggests that there
might be a correlation between the number of activities, lay-
outs, and images of an application. Therefore, we further in-
vestigate the correlation between the number of activities, the
number of layouts, and the number of images. The Pearson
correlation reveals that there are significant pairwise correla-
tions between all three parameters. There is a strong correla-
tion between the number of activities and the number of lay-
outs (r=0.79, p<.0001). Furthermore, there is a correlation
between the number of activities and the number of images
(r=0.29, p<.0001) and between the number of layouts and

the number of images (r=0.39, p<.0001). While it is not sur-
prising that an application with a larger number of activities
has a larger number of layouts, the strong correlation suggest
a common pattern.

Discussion
Of the Android applications we analyzed, we found that
88.25% support more languages in addition to English. Fur-
thermore, we determined that a diverse range of languages is
supported and the majority supports five or more languages.
The results suggest that popular Android applications are di-
verse in terms of supported languages. It can be assumed that
the chance to become popular is much higher if an application
supports languages in addition to English.

We analyzed the applications’ number of activities, layout
files, and images. It is shown that applications from differ-
ent categories use significantly different number of activities
and layout files. We show that tools and as well as appli-
cations from the categories Entertainment, Efficiency, Music
& Audio, Photography, and Books & References have fewer
views and interface layouts than applications from the cat-
egories: Communication, Social Networks, Shopping, and
Travel. The strong linear correlation between the number of
activities and the number of layout files suggests a linear fac-
tor. Further, it is not common that an app provides more than
one entry point. Only 20% of the apps have more than one
main activity. With 96.25%, the overwhelming majority of
the applications analyzed require Internet access and almost
half of the applications (47.50%) access location information.
While there are different reasons why an application requires
Internet access (e.g., to display advertisements), the very high
number of applications that require it still suggest that the ma-
jority of the applications rely on dynamic content. In partic-
ular, if ads are considered dynamic content. Notably, almost
half of the applications (47.25%) can provide tactile feedback
through the phones’ vibration motor. Furthermore, the apps
explicitly support various devices based on screen pixel den-
sities rather than screen sizes.

Applications from the categories differ in terms of interface
complexity. Tools, for example, have distinctly fewer views
and layouts compared to social networks. Tools, as the name
of the category suggests, address specific use cases. A typi-
cal example is the application “Spirit Level Plus” that enables
use of the device as a spirit level. However, the few numbers
of activities and layouts of other categories (i.e., Entertain-
ment, Efficiency, Music & Audio, Photography, and Books &

Layout Apps Percent Total
LinearLayout 390 66.95 51780
RelativeLayout 365 24.20 18716
FrameLayout 307 7.82 6048
ScrollView 332 2.35 3733
ListView 325 1.77 2814
TableLayout 167 0.92 710
AbsoluteLayout 35 0.12 89

Table 2. The seven standard layout containers. The columns show the
name of the layout container, the number of applications that use the
layout, the percent of the total number of layout containers, and the
total number of times they are used.

Widget Apps Percent Total
TextView 383 35.50 56467
ImageView 380 15.59 24794
Button 355 9.37 14912
View 271 4.35 6917
EditText 318 2.91 4628
ImageButton 294 2.71 4308
ProgressBar 300 1.67 2662
CheckBox 285 1.54 2443
RadioButton 176 0.76 1213
Spinner 178 0.48 759

Table 3. The ten most frequently used widgets used by the applications.
The columns show the name of the widget, the number of applications
that use the widget, the percent of the total number of widgets, and the
total number of times they are used.

References) suggest that they also address specific use cases.

USER INTERFACE ELEMENTS & PATTERNS
We are further interested in common UI elements and poten-
tial design patterns used in the applications. The user inter-
faces of Android applications are typically defined in XML
layout files. These files help to define the interface elements
and their structures. In the following, we briefly describe An-
droid user interfaces. We determine which interface elements
are most frequently used in Android applications. By analyz-
ing the hierarchy of interface elements, we identify common
interface elements combinations.

Android User Interface Layouts
The user interface of an Android application consists of a set
of activities. Each activity represents a single screen with an
interface. Each of these interfaces is a composition of widgets
such text boxes, checkboxes, and buttons. These widgets are
embedded in layout containers that define the visual structure
of the interface. By nesting layout containers in other layout
containers, the developer creates a tree of UI elements. While
it is also possible to define the user interface directly in the
source code, the Android developer guidelines recommend
declaring the trees of UI elements in XML layout files.

The Android API provides a number of different layout con-
tainers that structure the arrangement of the embedded ele-
ments. In addition, developers can define their own widgets
and layout containers. The five most common layout con-
tainers are briefly described in the following. The Linear-
Layout arranges its elements in a single column or a single
row. The RelativeLayout allows for relative positioning of its
elements in relation to each other or the parent. The Frame-
Layout blocks out an area on the screen to display a single
item. The TableLayout is similar to the LinearLayout but can

Figure 6. The average number of layouts per application for the seven
standard Android layout container. Error bars show standard deviation

Figure 7. The average number of widgets per application for the most
frequent widgets in our data set. Error bars show standard deviation

arrange its elements in rows and columns. The AbsolutLay-
out enables specification of the exact locations of it elements
and, hence, it is less flexible and harder to maintain.

While the layout containers provide the structure of the inter-
face, the user only interacts with the embedded widgets. An-
droid provides typical widgets that are also used in Desktop
applications and the Web. Typical examples are the TextView
(a text label), ImageView (an image), the Button, EditText (to
enter text), and the ProgressBar (visual indicator of progress).
One can also implement and use customized elements.

User Interface Elements
In total, we retrieved 29,086 XML layout files from the 400
Android applications. We analyzed the XML layout files to
determine the most frequent layout containers and widgets. In
total, the layout files contain 77,343 Android standard layout
containers and 159,072 widgets. Thus, there are about twice
as many widgets than layout containers.

Table 2 shows all standard layout containers in our data set.
The LinearLayout accounts for 66.95% of all layout contain-
ers and is used by 390 applications. The RelativeLayout ac-
counts for 24.20% of all layout containers and is used by 365
applications. The FrameLayout and the ScrollView are used
by the majority of the applications (307 and 332 applications)
but account for only 7.82% and 2.35% of all layout contain-
ers. The TableLayout is used by 167 applications and the
AbsoluteLayout is used by 35 applications. Both account for
less than one percent of the total number of standard layout
containers. Figure 6 shows the average frequency of a layout
is used by an application.

We also extracted the Android standard widgets used in the
applications. From the 159,072 widgets retrieved, TextView
is by far the most common element (35.5%) followed by Im-

Figure 8. The most common layout patterns.

Figure 9. The use of common layout patterns by the apps.

ageView (15.6%), and Button (9.4%). Table 3 shows the ten
most frequent widgets. Together, these frequently used wid-
gets account for 74.87% of the total number of the extracted
widgets and are used by more than half of the 400 applica-
tions. Figure 7 further depicts how often on average a widget
is used by an application.

In addition to the standard Android elements, we found 4,022
custom layout and widget elements used in layout files. These
layout containers and widgets are often custom buttons or lay-
outs, but also complete gallery views or a date-time picker.

User Interface Patterns
After extracting all widgets and layouts, we further analyzed
the layout files. We determined how elements are combined
together and used to obtain potential user interface design pat-
terns. We inspected the combination of widget elements as
well as combination of elements and their layout types.

To achieve this, we assessed layouts and their embedded ele-
ments. The elements in a layout file are hierarchically struc-
tured. Therefore, we parsed the hierarchy of the layout files to
retrieve parents and their child elements. This means that for
an element, we had its parent element as well as its siblings (if
any exist). This allowed us to extract available combinations
of elements. Then, we counted how often the combinations
are used in order to find the common patterns.

In total we identified 22,870 unique combinations of ele-
ments. 75.8% of these combinations are used only once. The
patterns can be classified in two different types. One type
of pattern consists of a layout container that contains another
layout elements as well as widgets. The most common pat-

Figure 10. The most common widget patterns.

Figure 11. The use of most common widget patterns used by the apps.

tern is a ScrollView that contains a LinearLayout. This com-
bination can present more content in a linear fashion then the
screen can show at once. Figure 8 shows the nine most fre-
quent layout patterns. We also checked how many apps used
these patterns. The most frequent pattern is used in 307 ap-
plications. Interestingly, the second most frequent pattern,
which is a linear layout nested in a linear layout, is used in
fewer applications than the third pattern, i.e., two linear lay-
outs nested in a linear layout (236 vs. 248 applications). The
use of the frequent patterns is shown in Figure 9. The appli-
cations in the Learning category use the patterns on average,
more often than other categories.

The second type of pattern consists of layout elements that
only contaion widget elements. Figure 10 presents the ten
most frequent combinations. Having two TextViews in a Lin-
earLayout is the most frequent pattern used in the applica-
tions. The second frequent pattern is a LinearLayout that has
one TextView, and the third one is an ImageView together
with a TextView in a LinearLayout. We also observed the
use of ButtonViews in different patterns. The use of patterns
by the applications reveals similar trend for the top three pat-
terns. However, the pattern which consists of two buttons
nested in a linear layout (forth most frequent pattern) is used
less than the pattern which has single button nested in a lin-
ear layout (fifth frequent pattern). Figure 11 shows the use
of patterns in the applications. The applications in the Social
Network category use this type of pattern on average more
often than other categories.

Implications
We analyzed the interface layouts of the 400 most popular
Android applications. We determined which interface wid-

gets and layout containers are most frequently used. We
found that the two widgets TextView and ImageView that are
just used to show labels and images account for over 50%
of all widgets. While it is rather obvious that widgets that
display information are more common than interactive wid-
gets, the proportion is still surprising. We found, for exam-
ple, 47 times more TextViews than RadioButtons. Some in-
teractive standard widgets, such as the ToggleButton and the
SeekBar, can even be considered as esoteric. The Toggle-
Button accounts for only 0.37% and the Seekbar accounts for
0.25%. The most frequent interactive widgets (Button and
EditText) suggest that the layouts of the analyzed applications
are mainly used by entering text and pressing buttons.

We further identify frequent patterns of interface elements.
The patterns retrieved are commonly used across all apps. We
found that the most frequent patterns are more common than
a number of standard widgets. Altogether, 21.13% of all wid-
gets and layout containers in our data set are part of at least
one of the 10 most frequent patterns. Since 77.28% of all
ScrollViews contain a LinearLayout, replacing this combina-
tion by a layout container that combines the two would be
the fifth most frequent layout container. The second most fre-
quent layout pattern combines a LinearLayout with another
LinearLayout. Interestingly, one of the layout containers in
this combination is useless2.

The most common widget pattern in our data set consists of a
LinearLayout that includes two TextViews and covers 5.43%
of all interface elements. This pattern alone is almost as fre-
quent as check boxes, radio buttons, toggle buttons, and seek
bars together. Development of a new widget that substitutes
this pattern would rank it as the sixth most frequent widget.
Thus, identification of frequent patterns in general will enable
development of new optimized widgets.

LIMITATIONS
We rely on the ranking of the Google Play market to select
popular applications. The parameters that influence the rank-
ing and the algorithm itself are unknown. However, the same
ranking is used if users browse Google Play. Therefore, the
400 selected applications might not be the 400 most widely
used applications, but we assume that there is a very strong
overlap. In addition, to the best of the authors’ knowledge,
400 is the highest number of mobile interfaces that have been
systematically analyzed. While selecting and downloading
applications, we had to use a specific device ID and a specific
locale. Developers can restrict applications to certain devices,
locales, and configurations. In addition, we only downloaded
free applications. We assume, however, that popular applica-
tions are widely available across devices and locales.
We only analyze UIs created through XML layout files. User
interfaces and further enhancements can be developed pro-
grammatically beyond the XML files and can thus also be dy-
namically be created. However, the Android developer guide-
lines recommend using XML layout files to define the user

2If a developer adds a LinearLayout as the only child of another Lin-
earLayout the Android SDK suggest that ”This LinearLayout layout
or its LinearLayout parent is useless”

interface. Accordingly, all of the analyzed apps use this ap-
proach. We therefore assume that this approach is so common
that the analysis enabled general conclusions.

CONCLUSION & FUTURE WORK
In this paper we show how to disassemble Android APK files
to retrieve information about mobile interfaces. We down-
loaded and analyzed 400 apps from Google Play, Google’s
application store for Android devices. We disassembled the
application packages to reconstruct the content. We found
that 88.25 % of the apps support more than one language and
93% of the app explicitly support screens with high pixel den-
sity. We showed that tools as well as apps from different cat-
egories vary in the number of views and interface layouts.
This can be used as indicators for the complexity of apps’ use
interfaces.
By analyzing the apps’ interface layouts, we determined
the interface widgets and layout containers used most often.
We further identified frequent combinations of interface el-
ements. Aggregatively, the ten most frequent combinations
cover 21.13% of all interface elements. They are all more
frequent than some common widgets, including radio but-
tons and Spinner. If the four most common widget combi-
nations would be considered as separate widgets, they would
all be among the ten most frequent widgets. The most com-
mon combination that consists of three nested elements cov-
ers 5.43% of all interface elements. It is more frequent than
progress bars and checkboxes. This means, a new widget that
substitutes this combination could replace all occurrences of
the combinations. In this case, this new widget would be the
sixth most frequent widget. The identification of frequent UI
elements combinations provide the possibilities of optimizing
widgets and introducing new widgets.
Determining how frequently different interface elements are
used can motivate further research. We only investigated the
parent and siblings of an element to find possible parents.
However, it would be interesting to take into account other
information such as the child elements to retrieve other type
of patterns. Researchers might consider focusing on common
interface elements. Furthermore, the patterns identified mo-
tivate the development of new widgets that ease the interface
development and improve the usability. We conducted a static
analysis of the user interface. Executing the downloaded ap-
plication in an emulator would enable to also observe the ap-
plications’ dynamic behavior. A user’s input can be simulated
to combine the static analysis with an analysis of the visual
appearance. The static analysis combined with an analysis of
UI interaction paths [33], observations of actual user behav-
ior collected on a large scale [7, 12, 24, 26], and consideration
of biomechanics [15] could ultimately result in a holistic un-
derstanding of mobile interaction. In general, the presented
approach suggests a new method to understand user interface
designs that may help to implement new development tools
for designing more successful and more usable applications.
Acknowledgment: This work was funded by the German
Research Foundation within the SimTech Cluster of Excel-
lence (EXC 310/1).

REFERENCES
1. Android Developer Guideline, accessed 17.12.2012.

http://developer.android.com/guide/practices/
ui_guidelines/index.html.

2. apktool Software, accessed 17.12.2012.
http://code.google.com/p/android-apktool/.

3. Google Blog, accessed 17.12.2012.
http://officialandroid.blogspot.de/2012/09/
google-play-hits-25-billion-downloads.html.

4. smali - An assembler/disassembler for Android’s dex
format, accessed 17.12.2012.
http://code.google.com/p/smali/.

5. Amalfitano, D., Fasolino, A., Tramontana, P.,
De Carmine, S., and Memon, A. Using gui ripping for
automated testing of android applications. In Proc. ASE
(2012).

6. Balagtas-Fernandez, F., Forrai, J., and Hussmann, H.
Evaluation of user interface design and input methods
for applications on mobile touch screen devices. In Proc.
Interact (2009).

7. Böhmer, M., Hecht, B., Schöning, J., Krüger, A., and
Bauer, G. Falling asleep with angry birds, facebook and
kindle: a large scale study on mobile application usage.
In Proc. MobileHCI (2011).

8. Cui, Y., and Roto, V. How people use the web on mobile
devices. In Proc. WWW (2008).

9. Enck, W., Ongtang, M., and McDaniel, P. On
lightweight mobile phone application certification. In
Proc. CCS (2009).

10. Gibler, C., Crussell, J., Erickson, J., and Chen, H.
Androidleaks: Automatically detecting potential privacy
leaks in android applications on a large scale. Trust and
Trustworthy Computing (2012).

11. Gilbert, P., Chun, B., Cox, L., and Jung, J. Vision:
automated security validation of mobile apps at app
markets. In Proc. MCS (2011).

12. Henze, N., Pielot, M., Poppinga, B., Schinke, T., and
Boll, S. My app is an experiment: Experience from user
studies in mobile app stores. IJMHCI (2011).

13. Henze, N., Rukzio, E., and Boll, S. 100,000,000 taps:
analysis and improvement of touch performance in the
large. In Proc. MobileHCI (2011).

14. Henze, N., Rukzio, E., and Boll, S. Observational and
experimental investigation of typing behaviour using
virtual keyboards on mobile devices. In Proc. CHI
(2012).

15. Hrabia, C.-E., Wolf, K., and Wilhelm, M. Whole hand
modeling using 8 wearable sensors: biomechanics for
hand pose prediction. In Proc. AH (2013).

16. Hu, C., and Neamtiu, I. A gui bug finding framework for
android applications. In Proc. SAC (2011).

17. Leiva, L., Böhmer, M., Gehring, S., et al. Back to the
app: The costs of mobile application interruptions. In
Proc. MobileHCI (2012).

18. Lim, S. L., and Bentley, P. J. How to be a successful app
developer: lessons from the simulation of an app
ecosystem. In Proc. GECCO (2012).

19. Mahmood, R., Esfahani, N., Kacem, T., Mirzaei, N.,
Malek, S., and Stavrou, A. A whitebox approach for
automated security testing of android applications on the
cloud. In Proc. AST (2012).

20. Möller, A., Diewald, S., Roalter, L., Michahelles, F., and
Kranz, M. Update behavior in app markets and security
implications: A case study in google play. In Proc.
MobileHCI (2012).

21. Nielsen. Smartphones Account for Half of all Mobile
Phones, Dominate New Phone Purchases in the US,
accessed 17.12.2012. http://blog.nielsen.com/
nielsenwire/online_mobile/smartphones-account-
for-half-of-all-mobile-phones-dominate-new-
phone-purchases-in-the-us/.

22. Rahmati, A., and Zhong, L. Studying smartphone usage:
Lessons from a four-month field study. IEEE
Transactions on Mobile Computing (2012).

23. Raneburger, D., Popp, R., and Vanderdonckt, J. An
automated layout approach for model-driven wimp-ui
generation. In Proc. EICS (2012).

24. Sahami Shirazi, A., Rohs, M., Schleicher, R., Kratz, S.,
Müller, A., and Schmidt, A. Real-time nonverbal
opinion sharing through mobile phones during sports
events. In Proc. CHI (2011).

25. Saylor, M. The Mobile Wave: How Mobile Intelligence
Will Change Everything. Vanguard, 2012.

26. Schleicher, R., Sahami Shirazi, A., Rohs, M., Kratz, S.,
and Schmidt, A. Worldcupinion experiences with an
android app for real-time opinion sharing during soccer
world cup games. IJMHCI (2011).

27. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., and
Weiss, Y. andromaly: a behavioral malware detection
framework for android devices. Journal of Intelligent
Information Systems (2012).

28. Silva, C. E. Reverse engineering of gwt applications. In
Proc. EICS (2012).

29. Silva, J. L., Campos, J., and Harrison, M. Formal
analysis of ubiquitous computing environments through
the apex framework. In Proc. EICS (2012).

30. Szydlowski, M., Egele, M., Kruegel, C., and Vigna, G.
Challenges for dynamic analysis of ios applications.
Open Problems in Network Security (2012).

31. Verkasalo, H. Contextual patterns in mobile service
usage. Personal and Ubiquitous Computing 13, 5
(2009).

32. Zhang, S., Lü, H., and Ernst, M. D. Finding errors in
multithreaded gui applications. In Proc. ISSTA (2012).

33. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X.,
and Zou, W. Smartdroid: an automatic system for
revealing ui-based trigger conditions in android
applications. In Proc. SPSM (2012).

http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://code.google.com/p/android-apktool/
http://officialandroid.blogspot.de/2012/09/google-play-hits-25-billion-downloads.html
http://officialandroid.blogspot.de/2012/09/google-play-hits-25-billion-downloads.html
http://code.google.com/p/smali/
http:// blog . nielsen . com / nielsenwire / online _ mobile / smartphones - account - for - half - of - all - mobile - phones - dominate - new - phone - purchases - in - the - us/
http:// blog . nielsen . com / nielsenwire / online _ mobile / smartphones - account - for - half - of - all - mobile - phones - dominate - new - phone - purchases - in - the - us/
http:// blog . nielsen . com / nielsenwire / online _ mobile / smartphones - account - for - half - of - all - mobile - phones - dominate - new - phone - purchases - in - the - us/
http:// blog . nielsen . com / nielsenwire / online _ mobile / smartphones - account - for - half - of - all - mobile - phones - dominate - new - phone - purchases - in - the - us/

	Introduction
	Related Work
	Disassembling Android applications
	Structure of Android applications
	Decoding Android application packages
	Inspecting decoded application packages
	Analysis of files & folders structures
	Analysis of the Metadata
	User Interface Layouts and Elements

	Data Set
	Statistics of popular Android Applications
	Languages
	Supported screen
	App's launchers (main activities)
	Analysis of the permissions
	Number of User Interfaces
	Activities
	Layouts
	Images
	Correlations

	Discussion

	User Interface Elements & Patterns
	Android User Interface Layouts
	User Interface Elements
	User Interface Patterns
	Implications

	Limitations
	Conclusion & Future Work
	REFERENCES

