Software-Reduced Touchscreen Latency

Niels Henze*, Markus Funk*, Alireza Sahami Shirazi*
*University of Stuttgart “Yahoo Inc.
*{firstname.lastname} @vis.uni-stuttgart.de, “alireza@yahoo-inc.com

ABSTRACT

Devices with touchscreens have an inherent latency. When a
user’s finger drags an object across the screen the object fol-
lows with a latency of around 100ms for current devices. Pre-
vious work showed that latencies down to 25ms reduce users’
performance and that even 10ms latency is noticeable. In this
paper we demonstrate an approach that reduces latency using
a predictive model. Extrapolating the finger’s movement we
predict where the finger will be in the next moment. Compar-
ing different prediction approaches we show for three differ-
ent tasks that prediction using neural networks is more precise
than linear and polynomial extrapolation. Furthermore, we
show through a Fitts’ Law dragging experiment that reducing
touch latency can significantly increases users’ performance.
As the approach is software-based it can easily be integrated
into existing mobile applications and systems.

Author Keywords
Touchscreen; Touch Input; Latency; Lag; Prediction

ACM Classification Keywords
H.5.2 Interfaces and Presentation: User Interfaces

INTRODUCTION & RELATED WORK

Latency denotes the time between a stimulus and a resulting
response. Just as other input and output technologies, touch
screens have certain latency. As described by MacKenzie
and Ware, lag is inevitable and can be attributed to proper-
ties of input devices, software, and output devices [19, 22].
Kaaresoja and Brewster measured the latency of commer-
cial smartphones [15]. They found that the latency strongly
varies across software, hardware, and modalities. For visual
feedback, the lowest latency they reported is around 75ms.
But latency can go up to more than 200ms. Similarly, Ng et
al. stated that visual latency of modern touch systems is be-
tween 50ms and 200ms [22]. This means that if an object is
dragged on a touch screen, the object follows the finger with
50ms to 200ms. This latency results in a gap between finger
and object that can be several centimeters.

*The work has been conducted while he was at the University of
Stuttgart.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MobileHCI 16, September 06-09, 2016, Florence, Italy

© 2016 ACM. ISBN 978-1-4503-4408-1/16/09$15.00.

DOIL: http://dx.doi.org/10.1145/2935334.2935381

The effect of latency on perception and performance has been
studied for different domains and modalities. Latency, for
example, significantly affects user performance in VR [8],
especially for free-hand pointing [31]. For AR, Allision et
al. found that latency reduces the user’s stability [2]. It is re-
ported that latencies of 50ms and 100ms affect the ability of
users to visually follow a virtual object in a head-mounted
display setup [21]. Meehan et al. compared end-to-end la-
tencies of 50ms and 90ms in VR. They showed that higher
latency even results in a lower sense of presence and weaker
physiological responses [20].

Previous work investigated the latency for different input de-
vices including mouse and touchscreen [22, 24, 25, 27]. An-
derson et al. showed that systems with higher latency can feel
less responsive [3]. Ng et al. proposed the Accelerated Touch
System, a prototype that combines a traditional direct-touch
layer with a low-latency layer that displays nearly immediate
visual feedback [22]. Jota et al. used this system to investigate
the effect of different levels of latencies down to 1ms [14].
They found that users are able to discriminate differences far
below the latency of current consumer devices [22]. Using a
Fitts’ Law dragging task it is further shown that latency down
to 25ms decreases performance.

An approach to reduce latency is predicting the user’s ac-
tion. Ababsa et al., for example, compared different ap-
proaches to compensate head tracking latency for augmented
reality [1]. Buker et al. investigated the effect of latency on
simulator sickness while using a see-through helmet-mounted
display [6]. They showed that predictive compensation re-
sults in a lower magnitude of simulator sickness. Xia et
al. reduced touchdown latency for touchscreens by predict-
ing when a finger touches the screen by observing the finger
above the screen [32]. More related to our work is endpoint
prediction for selection tasks. For example, Lank et al. pro-
pose a method for predicting gesture endpoints using the mo-
tion kinematics [17]. Similarly, Ziber et al. used statistical
machine learning [33] and Pasqual and Wobbrock used tem-
plate matching [23] for endpoint prediction for mouse point-
ing. Recent work by Cattan et al. also investigated the effect
of linearly extrapolating the position of a user’s finger on a
tabletop to reduce latency [7]. Using a custom system opti-
mized for low latency, the authors show that the simple linear
extrapolation did not improve participants’ performance for
end-to-end latencies above 42ms.

We propose a software-based prediction of finger movement
to reduce the latency of mobile touchscreen. Inspired by work
in VR [6], we predict the future position of the user’s finger

http://dx.doi.org/10.1145/2935334.2935381

measured
position

-
=28~ _ actual
~7& _ position
~

predicted
position

Figure 1. By processing the collected data offline a predicted touch po-
sition can be compared with the actual position where the finger will be
for every touch point. We use error as a combined measure of lag and
jitter for the comparison of different prediction techniques.

on the touch screen. In contrast to previous work on end-
point prediction, e.g. [17, 23, 33], this requires not only to
determine one out of a limited number of endpoints but to
reconstruct arbitrary trajectories. Similar to Cattan et al. [7]
we predict a finger’s position using the previous trajectory. In
contrast to Cattan et al. we use neural networks trained with
data collected from actual touch strokes. We show that an
ensemble of neural networks significantly reduces the predic-
tion error compared to the linear extrapolation used by Cattan
et al. We further show through a Fitts’ Law experiment that
predicting a finger’s movement using neural networks on a
standard mobile device significantly improves users dragging
performance.

PREDICTING TOUCH POSITIONS

As shown in Figure 1, our aim is to reduce the end-to-end
latency of mobile touch devices by predicting the finger’s
movement. For touchscreens, the end-to-end latency is the
time between a user’s action on the screen and the time a vi-
sual reaction is displayed. End-to-end touchscreen latency is
between 50ms and 150ms for common mobile devices. Thus,
when a user uses a finger to drag an object across the screen
the dragged object follows the finger with a delay of up to
150ms. Depending on the speed of the finger the latency can
result in a gap of several centimeters between the finger and
the dragged object. Similarly, when a user draws a line there
is a gap between the line that is drawn and the finger.

A potential approach for reducing touchscreen latency is to
predict the position of the user’s finger based on the current
observation. Perfect prediction of the finger’s position in
100ms could eliminate the end-to-end latency of a touch-
screen with 100ms. To predict where the user’s finger will
be in the near future, we trained neural networks to predict
the position of the user’s finger. We first implemented and
deployed a drawing and writing application for Android
devices. We used the application to collect data from 6181
mobile devices. Using a subset of the data, we trained an
ensemble of neural networks that predict the movement of
the user’s finger on the screen.

Application for data collection

We implemented a drawing and writing application to collect
a large number of touch strokes from a diverse sample and
different devices [12, 13]. The application! provides a set of
features that are typical for simple drawing and writing ap-
plications available for mobile devices (see Figure 2). The
application displays a modal dialog at the first start that in-
forms the user that the application is a research apparatus and
asks if the user is willing to share stroke data with. We use
the approach with two-buttons discussed by Pielot et al. [28].
The application provides two different views. In the appli-
cations gallery, users can create new pages or select pages to
continue drawing on existing ones. Furthermore, users can
delete pages, export them to the device’s gallery and share
them through the Android standard sharing mechanism.

In the page-view, users can use a number of tools to draw
and write on a page. They can choose a color from a color
picker (2 left). Nine different backgrounds are provided and
users can also use an image from their gallery as background
(2 center). Furthermore, six different pens and one eraser are
provided (2 right). The six pens mimic different drawing and
writing tools including a felt pen, a calligraphic pen, and a
marker pen. Users can undo and redo strokes using the two
arrows in the icon bar.

The Android system provides the application with the po-
sition of the user’s finger or stylus while the user draws
on the touchscreen. Touch events are delivered with a fre-
quency of up to 60Hz. To draw smooth strokes, between two
touch events, the intermediate positions are interpolated using
polynomial interpolation. All touch events are stored within
the application to enable undo and to enable the collection
of touch strokes on our server. To prevent that Android’s
garbage collector starts while the user draws a stroke, strokes
are stored in a pre-allocated memory. Whenever the finger
or stylus lifts of from the touchscreen, the collected data is
copied to newly allocated memory and the garbage collector
is started.

In case the user is willing to share stroke data for research
purposes we transmit the collected data whenever the user
leaves the page view, either by going back to the gallery or by
exiting the application. Stroke data is combined with infor-
mation about the user’s device and transmitted to our server
via HTTPS to preserve users’ privacy. On the server, the data
from each individual device is stored separately.

Collected data

We published the first version of the application on Google
Play on January 25th, 2015. The first version, however, did
not transmit data to our server as the languorous authors had
to implement the logging facilities. On August 8th, 2015
we submitted an update of the application that records touch
strokes and transmits them to our server. Between August
8th, 2015 and December 15th, 2015 we collected data from
6181 different devices. According to the selected locale,

'The drawing application Pen & Paper in Google Play:
https://play.google.com/store/apps/details?id=
net .nhenze.penandpaper

https://play.google.com/store/apps/details?id=net.nhenze.penandpaper
https://play.google.com/store/apps/details?id=net.nhenze.penandpaper

from Gallery

Figure 2. Screenhots of the drawing application we used to collect
strokes.

the devices come from 83 different countries including Great
Britain (846 devices) and Germany (351 devices). Most com-
mon device types in the dataset are the Galaxy Note 4 (132
devices), the Galaxy Note 3 (124 devices) and the Nexus 7
(79 devices). In total, we collected 1,457,231 strokes consist-
ing of 36,105,759 touch events from the 6,181 devices.

As we assume that the strokes users draw are influenced by
a large number factors including display size, device perfor-
mance, and weight, we decided to focus on a small subset of
devices that are common in our dataset. We only consider
devices that provided at least two strokes and we selected a
subset containing only data from eight different device types:
We considered data from the Nexus 7 developed by Asus
(79 devices, 15,610 strokes, 276,281 events), the Samsung
Galaxy Note 3 (124 devices, 36,754 strokes, 892,360 events),
the Samsung Galaxy Note 4 (131, devices, 30,321 strokes,
571,587 events), the Samsung Galaxy S5 (63 devices, 24,130
strokes, 518,433 event), the Samsung Galaxy S6 (41 devices,
10,117 strokes, 265,319 events), the LG Nexus 5 (32 devices,
4,683 strokes, 98,105 events), the Samsung Galaxy Tab S 8.4
(31 devices, 14,116 strokes, 263,341 events), and the Sam-
sung Galaxy S4 (28 devices, 3,259 strokes, 94,743 events).
In total, the subset contains 2,980,169 touch events, from
138,990 strokes that were produced on 529 different devices.

Constructing the input vector

We aim to predict where the user’s finger will be in the near
future based on the previous movement of the finger. At run-
time, we receive a stream of x/y touch position together with
a timestamp from the touchscreen. At each point in time, we
can use the previous positions to predict the subsequent posi-
tions. Using the recorded data we know for each touch event
not only the previous but also the subsequent positions. Using
a sliding window we therefore partition the collected data into
samples consisting of a defined number (e.g. n=17) of touch
positions. From the samples, we derive features that can be
feed into supervised learning algorithms. For n=17, the first
10 touch events would be used as the previous touch events
that go into the supervised learning algorithm. The aim is to
predict the remaining 7 events.

We perform three steps to make the sample rotation, position,
and speed invariant. 1) First, to make the samples rotation
invariant we determine the angle « of the vector between the

last two touch events that go into the learning algorithm and
rotate the whole sample to align the vector with the y-axis. 2)
Second, to make the samples position invariant we take the
first derivation of the x/y position, thereby deriving the speed
of the finger along both axis from the touch positions. 3)
Third, we normalize the length of the sample by determining
the total length 3 of the input part of the sample and dividing
each component of the whole sample by 5.

The y and the x component of the preprocessed sample serve
as the input into the supervised learning algorithm. In ad-
dition, we feed the algorithm with the angle «, the normal-
ized total length of the sample 3, and the time the algorithm
should look into the future. Finally, we grouped the subsam-
ples eight devices described in the previous section by their
screen size in five groups and add a binary vector that indi-
cates the screen size of the device the sample originates from.
Using 10 consecutive touch events (the 10 most recent ones)
results in a total of 26 input values that go into the supervised
learning algorithm. As the output values, we use one of the
components that followed the last event that served as input.

Neural network training

Using the dataset and the approach for constructing the input
vector we derived a training set. Using the machine learning
framework Encog [11] and custom code, we experimented
with different supervised learning algorithms and different
sample sizes. Using cross validation we tested, for exam-
ple, support vector machines and nearest neighbor search. We
also tested different numbers of touch events that go into the
sample. Artificial neural networks and using ten touch events
as input provided the lowest error. Therefore, we focused on
neural networks and ten touch event as input in the following.

Using again cross validation we tested different network con-
figurations and activation functions. Besides the input layer
with 26 neurons and the output layer with 2 neurons, we de-
cided for a single hidden layer with 96 neurons. Using addi-
tional hidden layers increased the error and using additional
neurons in the hidden layer increased the training time with-
out decreasing the error. As values in the input sample can
be both positive as well as negative we use a hyperbolic tan-
gent (TanH) activation function which typically performs bet-
ter compared to other differentiable and monotonic activation
functions [16]. We trained the network using resilient propa-
gation (RPROP) [5, 29] as previous comparisons suggest that
RPROP provides a high training speed and a good perfor-
mance [9, 30].

Finally, we randomly divided the training set into six parts
and trained ensembles of neural networks [10]. We trained
a set of networks that each predicts one of the seven touch
events that follow the sample. For each distance from the
last touch event that went into the input vector we trained six
neural networks. To predict a touch position that followed the
sample after a certain number of events (e.g. t=4) we combine
the output of the networks that predict the previous (t=3), the
current (t=4) and the subsequent (t=5) event. Thereby, we
combine the output of 18 neural networks. We trained six
networks for each of the seven touch events that follow the

lecxse, obe -
. #MMM
0% missed
(A'aYe] h . % 18P to start the next test

(b) (©)
Figure 3. (a) Four exemplary pictures painted by the participants. (b) Exemplary phrases written by the participants. (c) The Fitts’ Law dragging task

used in the study.

sample resulting in 42 neural networks. We trained each net-
work for about six hours on an Intel processor with 16 hard-
ware cores resulting in a total training time of about 10 days.

COMPARING PREDICTION APPROACHES

We conducted an experiment to compare the developed neu-
ral network-based prediction with other approaches. In the
study, we asked participants to perform three representative
tasks that involve moving the finger across a touchscreen. We
recorded the finger movement and used the collected data as
a ground truth to determine the error for each approach and
compensated amount of latency.

Method

The experiment consisted of three tasks to compare the pre-
diction approaches: writing, Fitts’ Law, and drawing (see
Figure 3a, 3b). We also considered three prediction levels:
33.3ms, 66.7ms, and 100ms which is equivalent to looking 2,
4, and 6 touch events in the future assuming a constant re-
fresh rate of 60Hz. As we processed the recorded data offline
we know for each touch event not only the previous finger
positions but also the subsequent finger positions.

We conducted the experiment using an Android application
that presents the tasks and records all occurring touch events.
We used a Nexus 7 tablet with a 7.02 inch (178mm) display
and a resolution of 1920 x 1200 pixels. The device provides
touch events and updates the screen with a constant rate of
60Hz. We deactivated all background services and used a
low-level function provided by the Android system to record
touch events. We measured a latency of 100ms using a 240Hz
camera (see [4]). We recruited 6 male and 2 female partici-
pants with an average age of 27.25 years (SD=2.96).

In the first task, participants had to write 10 phrases randomly
selected from the phrase set by MacKenzie et al. [18] with
their index finger. In the second task, participants performed
a Fitts’ Law tasks that replicated the design by Jota et al. [14].
Participants dragged a square inside a target square. We used
three target sizes (24mm, 32mm, and 40mm) and three dis-
tances (28mm, 68mm, 120mm), resulting in nine combina-
tions. Each combination was repeated eight times resulting
in 72 tasks. We randomized the order of all task. Between the
Fitts’ Law tasks we displayed the participant’s average error
rate. If the error rate was below 5% we encouraged partic-
ipants to speed up and if the error rate was above 5%, we
encouraged them to be more precise. Compared to Jota et

al. [14], we scaled down distances and target sizes by 20%
to fit the smaller display of the used 7 inch tablet. Finally,
participants had to draw a scene from their holiday. We asked
them to complete the drawing in less than five minutes. In
case participants did not come up with an idea for a picture
we encouraged them to draw a scene from an imaginary hol-
iday.

Results

In total, we collected 70,917 touch events for the writing task,
7,518 for the Fitts’ Law task, and 36,737 for the drawing
task. Figure 3a shows four exemplary drawings and Figure
3b shows four of the written sentences. For each recorded
touch event we derived the 10 preceding and the 6 succeeding
touch positions. In case a sequence contained a lift-off event
we used the lift-off position for all subsequent events and if
a sequence contained a touch-down event we used the touch-
down position for all preceding events. Processing the data
offline enables us to compare the predicted position with the
actual position. We use the Euclidean distance between the
predicted position and the actual position in 33.33ms, 66.67,
and 100ms as the only error metric to compare the different
approaches. This error metric combines lag and jitter in one
metric.

Table 1 shows the average error for the approaches, tasks,
and prediction distances. Considering each touch event as a
sample, we used a repeated measures ANOVA with paired t-
tests as post hoc tests to compare the conditions. Due to the
large sample size all differences are statistically significant
(p<.001). Thus, we refrain from a description of the infer-
ential statistics. Compared to the baseline (no extrapolation),
linear extrapolation (1st order polynomial) reduces the error
for up to 66ms for all three tasks. Further looking in the future
by 100ms, however, the baseline outperforms linear extrapo-
lation for drawing and the Fitts’ Law tasks. The same effect is
apparent for all extrapolation approaches. Their error grows
faster than the baseline. Increasing the degree of the polyno-
mial increases the error. The results also show that the en-
semble of neural networks clearly outperforms the other ap-
proaches. In comparison with the baseline for 66ms, the error
is 51.2% smaller for writing, 53.1% smaller for drawing, and
49.9% smaller for the Fitts’ Law task. Comparing the neural
network extrapolation with linear extrapolation for 66ms, the
average error is 31.3% smaller for writing, 46.2% smaller for
drawing, and 33.9% smaller for the Fitts’ Law tasks.

Writing Drawing Fitts’ Law
Approach 33.33ms 66.67ms 100ms | 33.33ms 66.67ms 100ms | 33.33ms 66.67ms 100ms
no extrapol. 15.4px 29.7px 42.5px 40.2px 779px 110.1px 31.5px 52.1px 65.5px
1st or. polyn. 7.8px 2l.1px 38.5px 25.1px 67.9px 123.4px 16.9px 39.5px 68.8px
2nd or. polyn. 10.5px 32.6px 67.3px 353px 107.3px 215.6px 32.6px 97.2px 196.8px
3rd or. polyn. 22.8px 98.9px 259.5px 76.7px 332.8px 870.9px 87.0px 383.1px 1010.7px
Neural networks 6.0px 14.5px 24.8px 16.1px 36.5px 60.2px 11.4px 26.1px 43.4px

Table 1. Average Euclidean distance between the actual touch position in 33.33ms, 66.67ms, and 100ms and the position predicted by the different
approaches. 10px are equivalent to 0.79mm and 10mm are equivalent to 127.20px. No extrapolation assumes that the touch position remains static and

does not project into the future.

Discussion

We compared approaches that predict where the user’s fin-
ger will be observed in 33.3ms, 66.7ms, and 100ms using
three tasks. By recording the touch data without extrapola-
tion we could compare the approaches using one dataset. The
results show that extrapolation using an ensemble of neural
networks outperforms polynomial extrapolation for all tasks.
Further, the results show that the neural networks extrapo-
lation reduces the objective error induced by latency. The
results, however, cannot show if this can increase the users’
performance. The error is a combination of the two factors:
lag and jitter. Hardware-based reduction of latency, as used
in [22], only reduce the lag without causing jitter. Extrap-
olation reduces the lag but at the same time increases jitter
due to prediction errors. Latency reduces the users’ perfor-
mance [14] and Pavlovych and Stuerzlinger reported that la-
tency has a stronger effect on human performance compared
to low amounts of spatial jitter [26]. As Pavlovych and Stuer-
zlinger also discuss, jitter can also dramatically increases the
error rate. Therefore, the effect of extrapolation on users’ per-
formance needs to be investigated.

ANALYSING THE EFFECT OF PREDICTION

We conducted a second experiment to investigate the effect
of software-reduced touchscreen latency. We integrated the
ensemble of neural networks into the apparatus from the pre-
vious study. We collected objective measures using a Fitts’
Law dragging task and collected subjective feedback for the
Fitts’ Law and a drawing task.

Method

The study uses a within-subjects design with two tasks. In
the first task participants perform the Fitts’ Law dragging task
used for the previous study. We used three target sizes x three
distances x eight repetitions, resulting in 72 tasks per condi-
tion. With the two prediction models and a baseline with no
prediction, the study comprised 216 dragging tasks. The tar-
get sizes and distances used in the Fitts’ law task were the
same as in the first study. The order of the dragging tasks
was randomized to avoid sequence effects. In the second
task participants could freely draw images. In both tasks, we
compared three conditions: (1) no prediction (baseline), (2)
predicting the finger’s position 33.3ms (two touch events at
60Hz) in the future, and (3) predicting the finger’s position
66.7ms (four touch events at 60 Hz) in the future. For the
Fitts’ Law task we collected the time it took to select the tar-
get and the error rate. For both tasks we asked participants to
rate the jitter, lag and the unpleasantness of the condition.

We recruited 14 participants (6 female, 8 male) with an av-
erage age of 26.3 years. None of the participant took part in
the first study. We used the same Nexus 7 tablet as in the first
study. We extended the Android application from the first
study to implement the 33.3ms and the 66.7ms prediction.
We integrated the neural network prediction into the appara-
tus used in the previous study. Using the Android version of
the Encog machine learning framework we simply load the
pre-trained networks into the application. As the Nexus 7 is
equipped with a quad-core Snapdragon S4 Pro processor, we
feed the input data from the touchscreen into four neural net-
works in parallel. One prediction using the whole ensemble
of neural networks takes about five milliseconds on average.

Results

We analyzed the results using a repeated measures ANOVA
and Bonferroni-corrected t-tests if appropriate. Analyzing the
results of the first task we determined if the prediction has
an effect on the error rate. Without prediction, participants
failed for 3.67% (SD=2.59%) of the tasks, with 33.33ms pre-
diction they failed to correctly complete 5.56% (SD=3.18%),
and with 66.67ms prediction the failed to correctly com-
plete 5.85% (SD=3.70%) of the tasks. A repeated measures
ANOVA did not reveal that the condition had an effect on the
number of errors participants made (F(2,26)=3.24, p=.06).

Without prediction, the average task completion time is
452ms (SD=122ms), 353ms (SD=68ms) with 33.33ms pre-
diction, and 368ms (SD=65ms) with 66.67ms prediction.
An ANOVA shows that prediction reduces the task com-
pletion time (F(2,26)=8.23, p=.002). Post hoc tests showed
that without prediction, participants needed more time com-
pared to 33.33ms prediction (p=.025) and 66.67ms predic-
tion (p=.048). The analysis did not reveal a difference be-
tween 33.33ms prediction and 66.67ms prediction (p=.676).
In line with [14] we determined if prediction has an effect
on throughput (bits/s). The average throughput is 3.81 bits/s
(SD=0.73 bits/s) without prediction, 4.71 bits/s (SD=0.62
bits/s) with 33.33ms prediction, and 4.46 bits/s (SD=0.51
bits/s) with 66.67ms prediction (see Figure 5). A repeated
measures ANOVA showed that prediction has an effect on
the average throughput (F(2,26)=10.11, p=.001).Post hoc
tests revealed a lower throughput without prediction com-
pared to 33.33ms prediction (p=.007) and 66.67ms prediction
(p=-035). We found no difference between 33.33ms predic-
tion and 66.67ms prediction (p=.335)

Analyzing participants’ subjective feedback (see Figure 4
left) revealed an effect on the perceived jitter (F(2,26)=48.26,

7

6

5

4

3

SRARR

1
no 33.33 66.67 no 33.33 66.67 no 3333 66.67
pred. ms ms pred. ms ms pred. ms ms

jitter lag unpleasant

=N W R O N

no 3333 6667 no 3333 6667 no 33.33 66.67
pred. ms ms pred. ms ms pred. ms ms
jitter lag unpleasant

Figure 4. Participants average subjective rating for the Fitts’ law task (left) and for the drawing task (right).

p<.001), the average rating of the jitter was 2.79 (SD=1.25)
without prediction, 3.36 (SD=1.45) with 33.33ms prediction,
and 6.14 (SD=0.77) with 66.67ms prediction. A post hoc test
revealed that there was more perceived jitter with 66.67ms
prediction compared to the other conditions (both p<.001).
There was no significant difference between no prediction
and 33.33ms prediction (p=.537). An ANOVA revealed no
effect on the perceived lag (F(2,26)=0.27, p=.763). The aver-
age rating of the lag was 3.86 (SD=2.03) without prediction,
3.50 (SD=1.83) with 33.33ms prediction, and 3.64 (SD=0.93)
with 66.67ms prediction. An ANOVA did also not reveal an
effect on the unpleasantness (F(2,26)=1.92, p=.168). The av-
erage rating of the unpleasantness was 3.71 (SD=2.02) with-
out prediction, 3.64 (SD=1.55) with 33.33ms prediction, and
4.50 (SD=1.74) with 66.67ms prediction.

For the second task we collected only subjective feedback
(see Figure 4 right). An ANOVA revealed an effect on the
perceived jitter (F(2,26)=15.84, p<.001). The jitter was rated
2.36 (SD=1.45) without prediction, 2.43 (SD=1.16) with
33.33ms prediction, and 5.21 (SD=1.93) with 66.67ms pre-
diction. Post hoc tests revealed a difference between 66.67ms
prediction and no prediction (p=.005) as well as with 33.33ms
prediction (p=.001). We found no difference between no pre-
diction and 33.33ms prediction (p=1.0). We found no ef-
fect on the perceived lag (F(2,26)=0.47, p=.631). The lag
was rated 3.79 (SD=1.76) without prediction, 3.14 (SD=1.56)
with 33.33ms prediction, and 3.50 (SD=1.70) with 66.67ms
prediction. An ANOVA revealed an effect on the unpleas-
antness (F(2,26)=4.861, p=.016). The average rating of the
unpleasantness was 3.36 (SD=2.02) without prediction, 3.07

-~ wul
—

N

throughput {bits/s)
w

[y

33.33ms 66.67 ms

Figure 5. Average throughput for the conditions. Error bars show stan-
dard error.

no prediction

(SD=1.49) with 33.33ms prediction, and 4.43 (SD=1.50) with
66.67ms prediction. Post hoc tests revealed that 66.67ms pre-
diction was rated less pleasant than 33.33ms prediction. We
found no difference between no prediction and 33.33ms pre-
diction (p=1.0) or 66.67ms prediction (p=.192).

Discussion

The results show that prediction can significantly increase
users’ speed and throughput for a dragging task. At the same
time we found no significant effect on the error rate. Thus, the
results suggest that extrapolating the movement of the users’
finger to reduce the latency can increase the users’ speed
without having a relevant effect on the errors made. Subjec-
tive feedback shows for both tasks that the 66.67ms prediction
results in significantly more perceived jitter. For the second
task, subjective feedback shows that 66.67ms prediction is
less pleasant than 33.33ms prediction. Overall, objective re-
sults show that prediction can improve users’ performance.
While 66.67ms prediction results in more perceived jitter and
can be perceived as less pleasant, we found no significant dif-
ferences between no prediction and 33.33ms prediction. De-
scriptive results suggest, however, that the 33.33ms predic-
tion might result in a more pleasant experience.

MacKenzie and Colin showed a linear correlation between
speed and latency [19]. We, however, observed almost
the same performance if predicting the finger’s position in
33.33ms and 66.67ms. As the speed is significantly higher
compared to the baseline, it can be concluded that there is no
linear correlation for the prediction approach used. We as-
sume that this is a result from the interaction of latency and
jitter (see [26] for a discussion of the trade-off between la-
tency and jitter). While the level of prediction increases, the
perceived latency decreases. This accordingly increases the
users’ speed. The prediction error (which equals to jitter)
also increases with the level of prediction which decreases
the speed.Thus, there is a trade-off between the amount of
compensated latency and the amount of resulting prediction
error.

CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how to improve users’ per-
formance by reducing the latency of touchscreens using a
software-bassed approach. We proposed different approaches
to extrapolate the fingers’ position on a touchscreen from the
previous movement. Based on a dataset consisting of touch

events from three representative tasks, it is shown that ex-
trapolating using an ensemble of neural networks trained on
a large dataset results in the lowest prediction error. We fur-
ther show that extrapolation significantly increases users’ per-
formance for a Fitts’ Law task. As the approach is purely
software-based it could be easily integrated into existing ap-
plications and systems.

The prediction approaches considered in this paper can only
be a selection of the possible techniques. Different machine
learning algorithms are certainly worth exploring. We believe
that considering the physiological restrictions of the human
hand when interacting with mobile devices is a promising di-
rection. Using a model of the human hand that predicts the
probability of particular hand postures could help to extrapo-
late the hand’s movement. Such an approach would naturally
further benefit from multi-touch tasks where more than one
finger touches the screen at a time. Furthermore, 33.33ms
prediction only reduces one-third of the latency if the device
has an end-to-end latency of 100ms. Using devices that al-
ready have less latency, however, 33.33ms prediction could
already remove most latency.

ACKNOWLEDGMENTS

This work is funded by the German Research Foun-
dation within the SimTech Cluster of Excellence (EXC
310/1) and by the MWK Baden-Wiirttemberg within the
Juniorprofessuren-Programm.

REFERENCES
1. Fakhreddine Ababsa, Malik Mallem, and David

Roussel. 2004. Comparison between particle filter
approach and Kalman filter-based technique for head
tracking in augmented reality systems. In Proceedings
or the IEEE International Conference on Robotics and
Automation, Vol. 1. IEEE, 1021-1026. DO1I:
http://dx.doi.org/10.1109/ROBOT.2004.1307284

2. Robert S Allison, Laurence R Harris, Michael Jenkin,
Urszula Jasiobedzka, and James E Zacher. 2001.
Tolerance of temporal delay in virtual environments. In
Virtual Reality, 2001. Proceedings. IEEE. 1IEEE,
247-254. D01 :
http://dx.doi.org/10.1109/VR.2001.913793

3. Glen Anderson, Rina Doherty, and Subhashini
Ganapathy. 2011. User Perception of Touch Screen
Latency. In Design, User Experience, and Usability.
Theory, Methods, Tools and Practice. Springer,
195-202. DOTI:
http://dx.doi.org/10.1007/978-3-642-21675-6_23

4. Francois Bérard and Renaud Blanch. 2013. Two touch
system latency estimators: high accuracy and low
overhead. In Proceedings of the 2013 ACM international
conference on Interactive tabletops and surfaces. ACM,
241-250. DOT :
http://dx.doi.org/10.1145/2512349.2512796

5. H Braun and M Riedmiller. 1992. RPROP: a fast
adaptive learning algorithm. In Proceedings of the
International Symposium on Computer and Information
Science VII.

10.

11.

12.

13.

14.

. Timothy J Buker, Dennis A Vincenzi, and John E

Deaton. 2012. The Effect of Apparent Latency on
Simulator Sickness While Using a See-Through
Helmet-Mounted Display Reducing Apparent Latency
With Predictive Compensation. Human Factors: The
Journal of the Human Factors and Ergonomics Society
54,2 (2012), 235-249. DOTI:
http://dx.doi.org/10.1177/0018720811428734

. Elie Cattan, Amélie Rochet-Capellan, Pascal Perrier,

and Francois Bérard. 2015. Reducing Latency with a
Continuous Prediction: Effects on Users’ Performance
in Direct-Touch Target Acquisitions. In Proceedings of
the 2015 International Conference on Interactive
Tabletops & Surfaces. ACM, New York, NY, USA,
205-214. DO1I:
http://dx.doi.org/10.1145/2817721.2817736

. Stephen R Ellis, Francois Bréant, Brian M Menges,

Richard H Jacoby, and Bernard D Adelstein. 1997.
Operator interaction with virtual objects: effect of
system latency. Advances in human factors/ergonomics
(1997), 973-976.

. JM Hannan and JM Bishop. 1997. A comparison of fast

training algorithms over two real problems. In Artificial
Neural Networks, Fifth International Conference on
(Conf. Publ. No. 440). IET, 1-6.

Lars Kai Hansen and Peter Salamon. 1990. Neural
network ensembles. IEEE Transactions on Pattern
Analysis & Machine Intelligence 10 (1990), 993-1001.

Jeff Heaton. 2015. Encog: Library of Interchangeable
Machine Learning Models for Java and C#. Journal of
Machine Learning Research 16 (2015), 1243-1247.
http://jmlr.org/papers/v16/heatonl5a.html

Niels Henze and Martin Pielot. 2013. App Stores:
External Validity for Mobile HCL. interactions 20, 2
(March 2013), 33-38. DOTI:
http://dx.doi.org/10.1145/2427076.2427084

Niels Henze, Martin Pielot, Benjamin Poppinga, Torben
Schinke, and Susanne Boll. 2011. My app is an
experiment: Experience from user studies in mobile app
stores. International Journal of Mobile Human
Computer Interaction (IIMHCI) 3, 4 (2011), 71-91.

Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor.
2013. How fast is fast enough?: a study of the effects of
latency in direct-touch pointing tasks. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2291-2300. DOTI :
http://dx.doi.org/10.1145/2470654.2481317

. Topi Kaaresoja and Stephen Brewster. 2010. Feedback

is... late: measuring multimodal delays in mobile device
touchscreen interaction. In International Conference on
Multimodal Interfaces and the Workshop on Machine
Learning for Multimodal Interaction. ACM, 2. DOT :
http://dx.doi.org/10.1145/1891903.1891907

http://dx.doi.org/10.1109/ROBOT.2004.1307284
http://dx.doi.org/10.1109/VR.2001.913793
http://dx.doi.org/10.1007/978-3-642-21675-6_23
http://dx.doi.org/10.1145/2512349.2512796
http://dx.doi.org/10.1177/0018720811428734
http://dx.doi.org/10.1145/2817721.2817736
http://jmlr.org/papers/v16/heaton15a.html
http://dx.doi.org/10.1145/2427076.2427084
http://dx.doi.org/10.1145/2470654.2481317
http://dx.doi.org/10.1145/1891903.1891907

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Bekir Karlik and A Vehbi Olgac. 2011. Performance
analysis of various activation functions in generalized
MLP architectures of neural networks. International
Journal of Artificial Intelligence and Expert Systems 1, 4
(2011), 111-122.

Edward Lank, Yi-Chun Nikko Cheng, and Jaime Ruiz.
2007. Endpoint prediction using motion kinematics. In
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 637-646. DOT :
http://dx.doi.org/10.1145/1240624.1240724

I Scott MacKenzie and R William Soukoreff. 2003.
Phrase sets for evaluating text entry techniques. In
CHI’03 extended abstracts on Human factors in
computing systems. ACM, 754-755. DOT :
http://dx.doi.org/10.1145/765891.765971

I Scott MacKenzie and Colin Ware. 1993. Lag as a
determinant of human performance in interactive
systems. In Proceedings of the INTERACT 93 and
CHI’93 conference on Human factors in computing
systems. ACM, 488-493. DOT :
http://dx.doi.org/10.1145/169059.169431

Michael Meehan, Sharif Razzaque, Mary C Whitton,
and Frederick P Brooks Jr. 2003. Effect of latency on
presence in stressful virtual environments. In Virtual
Reality, 2003. Proceedings. IEEE. IEEE, 141-148.
DOI:http://dx.doi.org/10.1109/VR.2003.1191132

W Todd Nelson, Merry M Roe, Robert S Bolia, and
Rebecca M Morley. 2000. Assessing simulator sickness
in a see-through HMD: Effects of time delay, time on
task, and task complexity. Technical Report. DTIC
Document.

Albert Ng, Julian Lepinski, Daniel Wigdor, Steven
Sanders, and Paul Dietz. 2012. Designing for
low-latency direct-touch input. In Proceedings of the
25th annual ACM symposium on User interface software
and technology. ACM, 453-464. DOT :
http://dx.doi.org/10.1145/2380116.2380174

Phillip T Pasqual and Jacob O Wobbrock. 2014. Mouse
pointing endpoint prediction using kinematic template
matching. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 743-752.
DOI :http://dx.doi.org/10.1145/2556288.2557406

Andriy Pavlovych and Carl Gutwin. 2012. Assessing
Target Acquisition and Tracking Performance for
Complex Moving Targets in the Presence of Latency and
Jitter. In Proceedings of Graphics Interface 2012.
Canadian Information Processing Society, Toronto, Ont.,
Canada, Canada, 109-116. nttp:
//dl.acm.org/citation.cfm?id=2305276.2305295

Andriy Pavlovych and Wolfgang Stuerzlinger. 2009a.
The Tradeoff Between Spatial Jitter and Latency in

26.

27.

28.

29.

30.

31.

32.

33.

Pointing Tasks. In Proceedings of the 1st ACM SIGCHI
Symposium on Engineering Interactive Computing
Systems. ACM, New York, NY, USA, 187-196. DOT :
http://dx.doi.org/10.1145/1570433.1570469

Andriy Pavlovych and Wolfgang Stuerzlinger. 2009b.
The tradeoff between spatial jitter and latency in
pointing tasks. In Proceedings of the 1st ACM SIGCHI
symposium on Engineering interactive computing
systems. ACM, 187-196. DOT :
http://dx.doi.org/10.1145/1570433.1570469

Andriy Pavlovych and Wolfgang Stuerzlinger. 2011.
Target Following Performance in the Presence of
Latency, Jitter, and Signal Dropouts. In Proceedings of
Graphics Interface 2011. Canadian Human-Computer
Communications Society, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada,
33—40.http:
//dl.acm.org/citation.cfm?id=1992917.1992924

Martin Pielot, Niels Henze, and Susanne Boll. 2011.
Experiments in app stores-how to ask users for their
consent. In Proceedings of the workshop on Ethics, logs
& videotape.

Martin Riedmiller and Heinrich Braun. 1993. A direct
adaptive method for faster backpropagation learning:
The RPROP algorithm. In Neural Networks, 1993.,
IEEE International Conference on. IEEE, 586-591.

Wolfram Schiffmann, Merten Joost, and Randolf
Werner. 1993. Comparison of optimized
backpropagation algorithms. In In Proceedings of the
European Symposium on Artificial Neural Networks,
Vol. 93. Citeseer, 97-104.

Richard HY So and German KM Chung. 2005. Sensory
motor responses in virtual environments: Studying the
effects of image latencies for target-directed hand
movement. In Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the. IEEE, 5006-5008.
DOI:
http://dx.doi.org/10.1109/IEMBS.2005.1615599

Haijun Xia, Ricardo Jota, Benjamin McCanny, Zhe Yu,
Clifton Forlines, Karan Singh, and Daniel Wigdor. 2014.
Zero-latency tapping: using hover information to predict
touch locations and eliminate touchdown latency. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 205-214.
DOI :http://dx.doi.org/10.1145/2642918.2647348

Brian Ziebart, Anind Dey, and J] Andrew Bagnell. 2012.
Probabilistic pointing target prediction via inverse
optimal control. In Proceedings of the 2012 ACM
international conference on Intelligent User Interfaces.
ACM, 1-10. DOT:
http://dx.doi.org/10.1145/2166966.2166968

http://dx.doi.org/10.1145/1240624.1240724
http://dx.doi.org/10.1145/765891.765971
http://dx.doi.org/10.1145/169059.169431
http://dx.doi.org/10.1109/VR.2003.1191132
http://dx.doi.org/10.1145/2380116.2380174
http://dx.doi.org/10.1145/2556288.2557406
http://dl.acm.org/citation.cfm?id=2305276.2305295
http://dl.acm.org/citation.cfm?id=2305276.2305295
http://dx.doi.org/10.1145/1570433.1570469
http://dx.doi.org/10.1145/1570433.1570469
http://dl.acm.org/citation.cfm?id=1992917.1992924
http://dl.acm.org/citation.cfm?id=1992917.1992924
http://dx.doi.org/10.1109/IEMBS.2005.1615599
http://dx.doi.org/10.1145/2642918.2647348
http://dx.doi.org/10.1145/2166966.2166968

	Introduction & Related Work
	Predicting Touch Positions
	Application for data collection
	Collected data
	Constructing the input vector
	Neural network training

	Comparing Prediction Approaches
	Method
	Results
	Discussion

	Analysing the Effect of Prediction
	Method
	Results
	Discussion

	Conclusions and Future Work
	Acknowledgments
	REFERENCES

