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Abstract 

Today, search engines on the Internet allow us to instantly find almost any kind of information or 
media. Unfortunately, the same capabilities are not available in the physical world, except for in 
industrial settings such as automated warehouses. Therefore, we implemented a stationary prototype 
that supports finding objects in everyday environments. The location is represented using a web-based 
search interface. In a user study, we compared four different representations for our stationary object 
finding system. Results favor a last seen image representation and a 2d map and show that more 
complex representations are not suitable for representing results of a search engine for the physical 
world. The participants were throughout positive about using a system like this in their daily lives, 
although there were concerns for privacy. Based on these results, we argue that scalable physical search 
engines can be built for everyday environments; that searching for physical objects can be made 
understandable to users; and that there are many practical and commercial cases where such systems 
would be beneficial. 

1 Introduction 
In the digital world, we are used to being able to easily find information through a variety of 
search engines and information retrieval tools. Almost any piece of information or media 
created by man can now be located through a simple keyword search. In the physical world, 
on the other hand, we do not have similar abilities to search and locate items.  

In this paper, we ask the question if it would be possible to apply the same principles that 
currently power digital search engines to the physical world? If so, what happens when it 
becomes possible to find literally everything? Imagine if the location of any physical object 
would be instantly available for searching, in the same way that popular Internet search 
engines allow us to find information on the World Wide Web today. This would mean that 
you could ask a system where you left your keys, or what place a book was last seen. 
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This could have long-ranging effects on human behavior. In the virtual domain, desktop 
search engines have already changed the behavior of users. For many users carefully 
organized hierarchical structures of folders, as well as specific Internet addresses, have 
become irrelevant. If the vision of a physical search engine becomes reality, it would 
facilitate not just the solution of trivial problems, such as finding a missing item. It could 
potentially change the way we interact with the world. Currently, humans use many 
strategies to manage and arrange the objects around us (Kirsh, 1995). If that was not 
necessary, we could instead organize objects according to practical or aesthetic criteria. We 
could even stop caring exactly where an object is, as long is it is findable – such as all those 
books lent to friends, which are currently to be considered lost. Furthermore, knowing about 
the things we use and their locations would allow completely new systems for 
personalization and context-aware services, as well as facilitate fundamentally new business 
models. We could potentially apply all the algorithms currently in use to recommend and 
target content on the Internet to the physical world. 

For those kinds of search engines for the physical world, the representation of search results 
is important. In this paper, we want to find out which representation of locations is most 
suitable for a room-level environment like a living room or an office room. Traditionally, 
location is represented through 2D, 3D or textual representations, which need knowledge 
about the environment. Recently it has been proposed to represent indoor location through a 
last seen image representation. In this paper, we compare these four representations by 
conducting a user study inside a room-level test scenario. We show that an image-based 
representation of search results that does not require a model of the environment and no 
exact location of objects results in the same performance as more complex representations. 
Consequently, scalable and model-independent real-world search engines become feasible. 
In the following, we give an overview about related work, describe the four representations 
and present the results of the study. 

2 Related Work 
Search engines for the Internet are today a well established part of the Information Retrieval 
field, and have become the foundation of successful companies such as Google and Yahoo!. 
The vision of search in the real world has initially been tightly linked to wearable cameras 
and the search and indexing of personal first-person view recordings (Mann, 1998). An 
example of the use of video retrieval techniques in this context can be found in (Tancharoen 
et al., 2005). More general concepts for search engines for the physical world are a much 
newer concept and have emerged over the last few years with advances in camera 
technologies, sensors, and computer vision algorithms. On a conceptual level, they can be 
considered a part of the Internet of Things (IoT) vision, where real-world physical objects get 
connected and equipped with processing and sensing capabilities (Mattern & Floerkemeier, 
2010). Typically, this has been achieved by attaching electronics or tags directly to the 
objects that are to be monitored. Early examples of systems that use tags to connect physical 
objects to digital information include Webstickers (Ljungstrand et al., 2000), where a printed 
barcode sticker could be attached to any object to associate it with an online URL; and the 
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collection of systems that demonstrate how electronic tags can bridge physical and virtual 
worlds as seen in (Want et al. 1999) However, neither of these systems kept track of the 
location of tagged objects, but rather used the objects to access information or initiate 
actions, hence providing physical objects as links or pointers to information (Holmquist et 
al., 1999). This means that a coarse location of an object is known only at the time when its 
tag is read and the whereabouts of the reader is (Song et al., 2007).  

Going beyond simple proximity information, a location technology has to be included. There 
are basically two options: either that tags can locate where they are, or the elements that read 
the tags can provide location information. Are variety of solutions are possible here. The 
combined use of the commercial Ubisense asset tracking system and visual markers is 
explored in (Song et al., 2007). Changes in the location and position of objects can be 
measured using passive RFID tags, which is experimentally assessed in (Fishkin et al., 2004) 
A reverse approach for locating objects is suggested in (Bohn, 2008), where the 
infrastructure (e.g. the floor) contains a dense grid of RFID tags and the object includes a 
reader. By reading the tags and consulting a map in which the tag locations are noted, an 
object can determine its location. Recently, the idea of using tags and other means to locate 
and search for entities in the real world has been explored in several projects. A 
comprehensive survey of such tag-based real-world search engines can be found in (Roemer 
et al., 2010).  

For smart environments, a number of systems for indexing and searching objects have been 
explored. SearchLight presents a search function for pervasive environments using a ceiling-
mounted camera/projector system (Butz et al., 2004). A system with a similar objective, but 
using ultrasound and RFID is presented in (Nakada et al., 2005). Another search engine for 
everyday objects that are tagged with RFID is presented in (Nickels et al., 2013). The paper 
describes a hierarchical approach to the search process and requires the instrumentation of 
furniture with readers. All of these approaches typically require a significant infrastructure 
and an augmentation of all objects with RFID or visual tags. One example that does not 
require tagging is Distributed Image Search (DIS) (Yan et al., 2008), which allows for 
searching of visual features using a submitted image. However, DIS does not build a 
database of known objects but acts purely by identifying visual features in the image stream. 
The Antonius system (Funk et al., 2013) equips the user with a wearable camera, which is 
constantly recognizing previously registered objects. 

Location can be represented physically, symbolically, absolutely, or relatively (Hightower & 
Borriello, 2001). A taxonomy for visualizing location-based information is introduced by 
(Suomela & Lehikoinen, 2004). They distinguish between the dimensions (3D, 2D, 1D, and 
none) and the view: first person view and third person view - where first person is the 
representation of location from a user-centric view and third person is the representation of 
location combined with the user’s current position. The taxonomy is denoted as MV (m, v), 
where m is the dimension and v is the view. 

Different techniques to visualize an object’s indoor location would require different technical 
implementations. Presenting the location of an object in a 3D representation, for example, 
requires a localization technique and a model of the environment. In contrast, presenting the 
location by providing an image of the surrounding of the object’s current location (Funk et 
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al., 2014) requires a camera system. Thus, it is important to learn about the differences 
between representation techniques for object’s indoor locations to guide the technical 
development of object localization systems. 

 

 

 
3 Representation of Location 
In our prototypical implementation, we compare four different representations (see Figure 1) 
of search results in context of a real-world search engine. It is designed to present the search 
result using one of the four representations. To describe the four representations, we use the 
taxonomy by (Suomela & Lehikoinen, 2004) and the categories of representing location after 
(Hightower & Borriello, 2001). 

Textual representation 
For the textual representation, we defined logical zones within the demo scenario (Kirsh, 
1995). The zones are located on furniture placed in the room and named accordingly. Also, 
there is a huge zone, which reaches over the whole room. When zones are included in a 
larger zone, including zones are written after the parent zone. E.g. a shelf, which is in the lab 
will be represented as ”lab–>shelf”. This symbolic representation is in the category MV(0,0). 

2D representation 
The 2D representation uses a 2D map of the demo scenario (see Figure 2). The map is 
aligned north-up (up on the map corresponds to north in the environment). The location of 
the sought object is denoted as a red dot. The user’s position is not displayed, as we use a 
MV(2,1) first person view with absolute representation. 

3D representation 

For the 3D representation, we created a 3D model of the demo scenario using Google 
SketchUp 8. The 3D representation is not part of the web-application as we used the OGRE 
engine to display the 3D model. Sought objects are displayed as a white box at the exact 3D 
location as in the real world. The user is able to move freely through the 3D space of this 
absolute representation viewing from a MV(3,1) first person view. 

Figure 1: Representations used in our prototype: (a) Reference image that is displayed to the user to find an object 
and to initialize the image search. (b)–(d) Representations displayed in our prototype to find an object: (b) Last 

seen image representation, (c) 2D map representation with the object as red dot, and (d) full 3D representation of 
the demo scenario (sought object is represented as a white box). 
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Last seen image 

As an alternative representation, we use the last seen image. It displays the last picture, in 
which the sought object was recognized. The image also shows surrounding objects or 
furniture and gives the user contextual information about the location of the object (see 
Figure 2). This relative representation can be categorized as MV(3,1). 

 

 

4 Evaluation 
We conducted a controlled lab study to compare the 4 location representations in the context 
of a real-world search engine. In the study, the participants had to locate objects using a real- 
world search engine with each of the representations. 

Method 
We conducted the study using a repeated measures design with the 4 search layouts as 
independent variable. The order of the conditions was counterbalanced using Balanced Latin 
Square. We used objective and subjective measures as dependent variables. As objective 
measures, we used the time a participant needs to understand where an object is located 
(understanding time) and the time a participant needs to find and touch the object (task 

Figure 2 – A participant is trying to find an object in the demo scenario. 
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completion time). To determine the understanding time, we measured the time the participant 
spent in front of the PC using the search interface with the current location representation. 
The task completion time was measured from the moment the participant left the PC until the 
sought object was touched. In addition, we collected qualitative subjective feedback from the 
participants using the NASA TLX (Hart & Staveland, 1988) and the SUS (Bangor et al., 
2008) questionnaire after each condition. 

First, participants were given time to make themselves familiar with the demo scenario (see 
Figure 2). The scenario contained about 50 objects, which were placed onto furniture in 
order to make the search task harder. In addition, we used 12 searchable objects, which were 
not part of the scenario that was shown to the participant at the beginning. Each of the 
searchable objects belongs to one of the categories: small, medium or large. To prevent the 
participant from memorizing an object’s location, a searchable object was placed into the 
scenario secretly after the participant was familiar with the scenario. The order of the 
searchable objects’ sizes was also counterbalanced in each condition. For each of the four 
representations, the participant had to search for three objects - one belonging to each 
category. Therefore, the participant used our application, which displayed a reference image 
and one of the four location representations. After an object was found, it was removed from 
the scenario and a new object was placed without the participant seeing the new location. 
When the participants found three objects using one representation, they were asked to fill 
the SUS and TLX questionnaires. 

We recruited 28 participants (9 female, 19 male). The participants were between 11 and 44 
years old (M=26.1, SD=6,55). Most of the participants were students with various majors, 
e.g. computer science, international business administration or mechanics. In an initial 
questionnaire, 26 participants stated to be searching for something at least once per week. In 
fact, 17 participants stated to search for an object daily. 

Results 
Including welcoming the participant, a short introduction to the topic and the demo scenario 
and all questionnaires, the study took around 30 minutes per participant. We used an analysis 
of variance (ANOVA) to compare the conditions with paired t-tests as follow-up post-hoc 
tests. Bonferroni correction is used to prevent inflation of type I errors. 

Detailed descriptive statistical results are shown in Table 1. For all conditions participants 
reported a low task load between 23.53 and 28.28 on the NASA TLX scale (between 0=no 
task load and 120=high task load). An ANOVA revealed no significant differences between 
the conditions for the NASA TLX (F(3, 81)=1.277, p=0.288). With scores between 74.82 
and 80.71 participants rated all search layouts similarly high on the SUS (between 1=not 
usable and 100=highly usable) and an ANOVA revealed no significant differences (F(3, 
81)=1.304, p=0.279). The average task completion time is between 5.45s and 6.00s. Again, 
an ANOVA did not reveal a significant difference between the conditions (F(3, 81)=0.934, 
p=0.428). 

On average, participants needed 9.94s to understand the textual description, 10.66s to 
understand the image, 9.41s to understand the 2D-map, and 12.63s to understand the 3D-
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map. An ANOVA revealed a significant difference for the time participants needed to 
understand the search layouts (F(3, 81)=8.740, p<0.001). Follow-up post-hoc test revealed 
that participants needed significantly more time to understand the 3D scene compared to the 
textual description (p=0.006) and the 2D-map (p<0.001). 

Representation TLX-Score SUS-Score Task 
Completion 
Time 

Understanding 
Time 

Textual Description 28.28 
(SD=19.16) 

74.82 
(SD=17.11) 

5.68s 
(SD=1.38) 

9.94s (SD=3.74) 

Last Seen Image 27.67 
(SD=16.59) 

79.19 
(SD=12.24) 

5.45s 
(SD=1.05) 

10.66s (SD=4.45) 

2D-Map 23.53 
(SD=14.22) 

80.71 
(SD=14.65) 

6.00s 
(SD=2.49) 

9.41s (SD=4.12) 

3D-Scene 24.50 
(SD=14.88) 

78.39 
(SD=14.06) 

5.61s 
(SD=2.40) 

12.63s (SD=5.65) 

Table 1: Results of the user study. All scores and times are the arithmetic mean over all participants. 

5 Discussion 
The results of the user study reveal, that all four representations have no significant 
differences in task load, usability and task completion time. Only the understanding time of 
the 3D-scene representation proved to be significantly worse than the other representation’s 
understanding time. The results are so far independent from the technology that is used to 
implement a real-world search engine. According to the results, a real-world search engine 
does not need to implement a 3D scene or an accurate floor plan of the area to display search 
results as they are needed by the 3D, 2D and textual representation. It can be argued that if a 
wearable camera is used to recognize an object within a room a last seen image 
representation would be the easiest representation to implement. It might be sufficient to 
provide a room-level location information combined with a last seen image representation 
rather than implementing a model of the environment. 
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Figure 3 – An overview of all used objects in our contextual follow-up study. In the images there is enough 

contextual information that detailed location information might not be needed. 

6 Contextual Follow-up Study 
We conducted a follow-up study to further investigate how accurate the simpler image-based 
representation is. Therefore, we took pictures of 20 objects in an office environment. The 
office consists of 12 rooms. We recruited 10 participants (1 female, 9 male, average age 
33.7, SD=6.37), who are familiar with the office environment, and showed them the pictures. 
The participants had to name the room, in which the object is located. Overall the 
participants could name 18,6 (SD=1.07) of the 20 rooms in the pictures correctly, which is a 
success rate of 93%. The most common error, which was made by 6 participants, was a 
picture taken in front of a shelf, where just the content of the shelf was visible. The results of 
the study show that participants, who are familiar with the scenario, can identify an object’s 
position if the location information is vague, e.g. ”in this building” by using the contextual 
information provided in a last seen image. 

7 System Recommendation 
Based on the results of both of our studies, we recommend a camera-based search engine 
which can be installed firmly in an environment, e.g. a living room or running on a wearable 
computer e.g. on smart glasses. By combining a last seen image representation of search 
results and a room-level indoor location information e.g. WiFi-based, a wearable search 
engine for the real world can function in new environments without having a model of the 
scene and without using a precise indoor-location system. 
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8 Conclusion 
In this paper, we compared four representations for search results of a real-world search 
engine. In our study participants were able to locate physical objects based on an image-
based representation. In two studies we found that an image-based representation is as 
suitable for presenting real-world search results as 2D, 3D or textual representation. 
Furthermore, an image-based representation does not need any model of the environment and 
does not need precise location information. We believe that by using an image-based 
representation of search results, a scalable and model-independent real-world search engine 
can be built. 
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